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Preliminaries: Size vs Depth vs Input Size
• Circuit Size (called just size for simplicity) = Total # of gates

• Classical Circuit Depth = Max # of gates from an input bit to an output bit

• Quantum Circuit Depth = # of “layers” of gates. Each layer consists of gates 
acting on a disjoint sets of qubits

• For a boolean decision problem , input size = n. Circuit 
Size and Depth are functions of n

f : {0,1}n → {0,1}



Preliminaries: NC vs QNC
•  : Class of problems solvable with  parallel processors and 

 depth. (Size ~  = . So NC  P )
NCq O(np)
O(log nq) O(np log nq) poly(n) ⊆

•  :  size, constant depthNC0 poly(n)

•  ? Constant depth. But size? No cloning. So Circuit Size = , 
where n is the input size.
QNC0 O(n)

• Is there a problem in  that is not in ? Yes, 2D HLF, as we’ll 
see. Classically,  depth. Quantumly, constant depth

QNC0 NC0

O(log n)



Preliminaries: Bernstein-Vazirani

|0n⟩ H⊗n
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|x⟩
Uf

∑
x

(−1) f(x) |x⟩ H⊗n

∑
y (∑

x

(−1)(s⊕y)⋅x) |y⟩ = |s⟩

•  is promised to be of the form .f : {0,1}n → {0,1} f(x) = (sTx) mod 2

• Classically,  queries. Quantumly, 
1 query due to oracle access

n



2D HLF: Motivation
• In general, implementing a quantum oracle  requires deep quantum circuits, 

that are impractical in the NISQ era.
Uf

• Gate Complexity ~ (Input Size)(Depth), and Error ~ gate complexity. So for a 
finite error, there is a trade-off between input size and depth.

• We naturally prefer a larger input size for a potential quantum advantage.

• So is there a shallow quantum circuit with a provable quantum advantage? 
Is there a shallow, non-oracular generalization of Bernstein-Vazirani?



2D HLF: Problem Statement
• We are given a quadratic form  defined as q : (𝔽2)n → ℤ4

q(x) = (xT Ax + bTx) (mod 4)

• So, Inputs:  binary symmetric. 
Also, A is the adjacency matrix of a 2D grid of  nodes.

b ∈ {0,1}n, A ∈ {0,1}n×n

n

• Define a set  ℒq = {x ∈ (𝔽2)n |q(x ⊕ y) = q(x) + q(y) ∀y ∈ (𝔽2)n}



2D HLF: Problem Statement

• Lemma 1:  is a linear subspace of  and . 
Additionally,  such that 

ℒq (𝔽2)n q(x) ∈ {0,2} ∀x ∈ ℒq
∃z ∈ (𝔽2)n q(x) = 2zTx (mod 4) ∀x ∈ ℒq

• So, Output: Secret string z ∈ {0,1}n



Proof of Lemma 1

• Proof: Take any . Does  ?x, x′ ∈ ℒq x ⊕ x′ ∈ ℒq

•
. Hence  is a linear subspace

q(x ⊕ x′ ⊕ y) = q(x) + q(x′ ⊕ y) = q(x ⊕ x′ ) + q(y) ∀y ∈ (𝔽2)n

⇒ x ⊕ x′ ∈ ℒq ℒq ⊂ (𝔽2)n

• Also, for ,  y = x q(x ⊕ x) = q(0) = 0 = 2q(x) (mod 4)
⇒ q(x) ∈ {0,2} ∀x ∈ ℒq



Proof of Lemma 1: Hidden Linearity

• Now define a function  as l : ℒq → (𝔽2)n l(x) = {1 if q(x) = 2
0 if q(x) = 0

• Then , so q(x) = 2l(x) ∀x ∈ ℒq l(x ⊕ y) = l(x) ⊕ l(y) ∀x, y ∈ ℒq

• Hence  is linear modulo 2 l(x)
⇒ l(x) = zTx (mod 2) ∀x ∈ ℒq, some z ∈ (𝔽2)n

⇒ q(x) = 2zTx (mod 4) ∀x ∈ ℒq, some z ∈ (𝔽2)n



Remark
• Unlike Bernstein-Vazirani, the secret string  is not unique. This is because 

the linearity is restricted to a subspace  of .
z

ℒq (𝔽2)n

• If we consider any , the orthogonal complement of , then 
 is also a valid secret string. 

y ∈ ℒ⊥
q ℒq

z′ = z ⊕ y

• In fact, there are  valid secret strings. The quantum algo for 2D HLF 
gives a uniform superposition over all valid secret strings as output.

|ℒ⊥
q |



The quantum algorithm 

Uq |x⟩ = iq(x) |x⟩ ∀x ∈ {0,1}n

CZ(A) = ∏
i<j

CZAij
ij

S(b) = ⊗j Sbj
j

(can be implemented with depth ≤ 4
for any subgraph of the 2D grid)

(just one layer)
}⇒ Total Depth ≤ 7

∀ instances of 2D HLF



Key technique in the algo

• Proof: Note that we do expect  to differ from 
 only by a phase, since 

S(b)CZ(A) |x⟩
|x⟩
{ |00⟩, |01⟩, |10⟩, |11⟩} CZ { |00⟩, |01⟩, |10⟩, − |11⟩}
{ |0⟩, |1⟩} S { |0⟩, i |1⟩}

S(b)CZ(A) |x⟩ = i(xT Ax+bT x) |x⟩ ∀x ∈ {0,1}n
S = (1 0

0 i)

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

• So  where  CZij |xixj⟩ = (−1)Aijxixj |xixj⟩ x = x1x2… xn

⇒ CZ(A) |x⟩ = ∏
i<j

CZij |x⟩ = (−1)∑ Aijxixj |x⟩ = (−1) 1
2 xT Ax |x⟩ = ixT Ax |x⟩

• Similarly, Sj |xj⟩ = ibjxj |xj⟩ ⇒ S(b) |x⟩ = ibT x |x⟩



Analysis of the algo

• So P(y) =
|Γ(𝔽n

2, y) |2

4n
∀y ∈ {0,1}n

• Where we define a Partial Fourier Transform 
w.r.t any  and any  asℒ ⊆ 𝔽n

2 y ∈ {0,1}n

|0n⟩ H⊗n

∑
x∈(𝔽2)n

|x⟩
Uq

∑
x∈(𝔽2)n

iq(x) |x⟩ H⊗n

∑
y∈(𝔽2)n

∑
x∈(𝔽2)n

i(q(x)+2yTx) |y⟩

≡ ∑
y∈(𝔽2)n

Γ(𝔽n
2, y) |y⟩

Γ(ℒ, y) ≡ ∑
x∈ℒ

i(q(x)+2yTx)



Analysis of the algo
• Note that  ,   and   𝔽n

2 = ℒq + ℒ⊥
q |ℒq | |ℒ⊥

q | = |𝔽n
2 | = 2n

• So it can be seen that  Γ(𝔽n
2, y) = Γ(ℒq, y) Γ(ℒ⊥

q , y)

•
But   Γ(ℒq, y) = ∑

x∈ℒq

i2(z⊕y)Tx = { |ℒq | , y ∈ z ⊕ ℒ⊥
q

0 , otherwise

• Also,     [involved proof!]Γ(ℒ⊥
q , y) = |ℒ⊥

q |1/2 ∀y ∈ {0,1}n



Analysis of the algo

• such that  , which 
of course includes  as well.

z′ ∈ z ⊕ ℒ⊥
q

z

• So finally, we find that   P(y) = {
1

|ℒ⊥
q |

if y ∈ z ⊕ ℒ⊥
q

0 otherwise

• Hence, just before measurement, 

state =
1

|ℒ⊥
q | ∑

y∈z⊕ℒ⊥
q

|y⟩ measure |z′ ⟩



Classical depth lower bound
• Lemma 2:  be a classical probabilistic circuit with gate fan-in . If 

 solves all size-n instances of 2D HLF with error probability , 

then  

Cn ≤ K
Cn < 1/8

depth(Cn) ≥
log n

16 log K

• Rough idea: There are special instances of 2D HLF, specifically when  is 
the adjacency matrix of an even length cyclic sub-graph of the 2D grid, 
when the input-output correlations of 2D HLF exhibit strong non-locality, 
which cannot be reproduced by constant depth circuits.

A



Take aways
• 2D HLF is a specially designed problem to demonstrate a computational 

advantage with constant depth quantum circuits.

• Classically, the authors prove a depth lower bound of  for bounded 
fan-in boolean circuits. Quantumly, all instances of 2D HLF can be solved by 
depth-7 quantum circuits.

Ω(log n)

• 2D HLF is still in , so a practical time advantage hasn’t been demonstrated yet.P

• However, the analysis now creates an explicit separation between 
 and .QNC0 NC0


