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Preliminaries: Size vs Depth vs Input Size

* Circuit Size (called just size for simplicity) = Total # of gates
» Classical Circuit Depth = Max # of gates from an input bit to an output bit

 Quantum Circuit Depth = # of “layers” of gates. Each layer consists of gates
acting on a disjoint sets of qubits

 For a boolean decision problem f: {0,1}" — {0,1}, input size = n. Circuit
Size and Depth are functions of n



Preliminaries: NC vs QNC

« NC1: Class of problems solvable with O(n") parallel processors and
O(log n?) depth. (Size ~ O(n” log n?) = poly(n). So NC C P)

. NC: poly(n) size, constant depth

. ONC" ? Constant depth. But size? No cloning. So Circuit Size = O(n),
where n Is the input size.

o |s there a problem in QNCO that is not in NCY? Yes, 2D HLF as we’ll
see. Classically, O(log n) depth. Quantumly, constant depth



Preliminaries: Bernstein-Vazirani

. £:{0,1}* - {0,1} is promised to be of the form f(x) = (s x) mod 2.
Ut

o Classically, n queries. Quantumly,
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2D HLF: Motivation

« In general, implementing a quantum oracle Uf requires deep quantum circults,
that are impractical in the NISQ era.

 Gate Complexity ~ (Input Size)(Depth), and Error ~ gate complexity. So for a
finite error, there is a trade-off between input size and depth.

 \We naturally prefer a larger input size for a potential guantum advantage.

 So is there a shallow quantum circuit with a provable quantum advantage?
Is there a shallow, non-oracular generalization of Bernstein-Vazirani?



2D HLF: Problem Statement

 \We are given a quadratic fo

m q : (F,)" — Z, defined as

g(x) = (x"Ax + b'x) (mod 4)

« So, Inputs: b € {0,1}", A € {0,1}"" binary symmetric.
Also, A Is the adjacency matrix of a 2D grid of n nodes.

 Define a set ffq — {x e (I

)" qx @ y) = g(x) + q(y) Vy € (l

2

)}



2D HLF: Problem Statement

+ Lemma 1: Z_is a linear subspace of (I,)" and g(x) € {0,2} Vx e Z .

Additionally, 9z € ([,)" such that g(x) = 2z'x (mod 4) Vx € & ;

e So, Output: Secret string z € {0,1}"




Proof of Lemmma 1

e Proof: Takeany x,x' € &£ ;- Does x @ x' € L g

+ gX@X' DY) =q0)+qgx'@y) =qgx D x)+q(y) Vyell
> x@x' € Z .Hence Z C (F,)" is alinear subspace

e Also,fory=x,gx@® x) =qg(0) =0 =2g(x) (mod 4)
= gqx) € {0,2} Vxe Z,

)n



Proof of Lemma 1: Hidden Linearity

Now defi function/ : & — ()" as I(x) Lif glx) =
: — —
., Now adefine a tunction g ») as (X 0 if g(x) = 0

. Then g(x) = 2I(x) Vx &€ fz)”q, solx®y) =Ilx)DIly) Vx,ye& qu

» Hence [(x) |s linear modulo 2
= I(x) =z'x (mod 2) Vx & <, some z € ([,)"

= g(x) =2z'x (mod 4) Vx & SZ , some 7 € ()"




Remark

 Unlike Bernstein-Vazirani, the secret string z is not unique. This is because
the linearity is restricted to a subspace £, of (I,)".

« If we considerany y & fz\fé, the orthogonal complement of fz)”q, then

7' =z @ yis also a valid secret string.

. In fact, there are | 3; | valid secret strings. The quantum algo for 2D HLF
gives a uniform superposition over all valid secret strings as output.



The quantum algorithm
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Key technique In the algo

S(b)CZ(A) | x) = i A0 | 1) vy e {0,1}" -
(o %)
» Proof: Note that we do expect S(b)CZ(A) | x) to differ from
| x) only by a phase, since
(100),[01),[10),[11)} =5 {]00),]01),]10), — [ 11)}
(10).11)} > {10).i 1)} CZ =

o O O

1 0 0
01 0
0 0 1
00 0 -1

» So CZ;|xx;) = (— 1) | X;X;) where x = XxX;... X,

> CZ(A)|x) = [] €Z;1x) = (= DT x) = (= 1745 x) = 747 x)

i<j

. Similarly, S;|x;) = i%9|x;) = S(b)|x) = i* *| x)



e Where we define a Partial Fourier Transform

Analysis of the algo

Xn n
| 0™) . 2 | x) _) Z (99| xy — a Z 1 (@(0)+2y" %) [ v)
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= ) T(F.y)|y)

n n
wrtany & C F;andanyy € {0,1}" as ve(F,)"

[(Z,y) = Z 1(q(0)+2y"x)
xet

C(F, ) |°
. So P(y) =|(4+y)‘ Vy € {0,1}"




Analysis of the algo

. Note that [:§=§fq+§f$, and \EQHS/”QH = || =27

. So it can be seen that I'(F},y) = T'(Z,,y) [(Z7,y)

But I'(& oY) = Z RS
X€Z,

0 , otherwise

- { L) yELD L

. Also, F(gq,y) = \SZ;\W Vy € {0,1}" [involved proofl]



Analysis of the algo

1
_ So finally, we find that P(y) = { | £ 1
0 otherwise

if yez@gé

e Hence, just before measurement,

1
state = o 2 | y) meast™s | Z')
‘ q ‘ yEZEBSZé

. suchthat 77 € z ® sz(;, which

of course Iincludes 7z as well.



Classical depth lower bound

» Lemma 2: C, be a classical probabilistic circuit with gate fan-in < K. If
C, solves all size-n instances of 2D HLF with error probability < 1/8,

logn

then depth(C,) > ————
P(Cy) 2 161log K

 Rough idea: There are special instances of 2D HLF, specifically when A is
the adjacency matrix of an even length cyclic sub-graph of the 2D grid,
when the input-output correlations of 2D HLF exhibit strong non-locality,
which cannot be reproduced by constant depth circuits.



Take aways

2D HLF is a specially designed problem to demonstrate a computational
advantage with constant depth quantum circuits.

» Classically, the authors prove a depth lower bound of £2(log n) for bounded

fan-in boolean circuits. Quantumly, all instances of 2D HLF can be solved by
depth-7 quantum circuits.

« 2D HLF is still in P, so a practical time advantage hasn’t been demonstrated yet.

 However, the analysis now creates an explicit separation between
ONC" and NC°.



