The 2D Hidden Linear Function problem

Sriram Gopalakrishnan
December 17th, 2020
IQC Waterloo

- arXiv:1704.00690 (2017) : Bravyi, Gosset \& Koenig : "Quantum advantage with shallow quantum circuits"

Preliminaries: Size vs Depth vs Input Size

- Circuit Size (called just size for simplicity) = Total \# of gates
- Classical Circuit Depth = Max \# of gates from an input bit to an output bit
- Quantum Circuit Depth = \# of "layers" of gates. Each layer consists of gates acting on a disjoint sets of qubits
- For a boolean decision problem $f:\{0,1\}^{n} \rightarrow\{0,1\}$, input size $=\mathrm{n}$. Circuit Size and Depth are functions of n

Preliminaries: NC vs QNC

- $N C^{q}$: Class of problems solvable with $O\left(n^{p}\right)$ parallel processors and $\underline{O}\left(\log n^{q}\right)$ depth. $\left(\right.$ Size $\sim O\left(n^{p} \log n^{q}\right)=\operatorname{poly}(n)$. So NC $\left.\subseteq \mathrm{P}\right)$
- $N C^{0}: \operatorname{poly}(n)$ size, constant depth
- $Q N C^{0}$? Constant depth. But size? No cloning. So Circuit Size $=O(n)$, where n is the input size.
- Is there a problem in $Q N C^{0}$ that is not in $N C^{0}$? Yes, 2D HLF, as we'll see. Classically, $O(\log n)$ depth. Quantumly, constant depth

Preliminaries: Bernstein-Vazirani

- $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is promised to be of the form $f(x)=\left(s^{T} x\right) \bmod 2$.
- Classically, n queries. Quantumly, 1 query due to oracle access

$$
\left|0^{n}\right\rangle \xrightarrow{H^{\otimes n}} \sum_{x \in\left(\mathbb{F}_{2}\right)^{n}}|x\rangle \xrightarrow{U_{f}} \sum_{x}(-1)^{f(x)}|x\rangle \xrightarrow{H^{\otimes n}} \sum_{y}\left(\sum_{x}(-1)^{(s \oplus y) \cdot x}\right)|y\rangle=|s\rangle
$$

2D HLF: Motivation

- In general, implementing a quantum oracle U_{f} requires deep quantum circuits, that are impractical in the NISQ era.
- Gate Complexity ~ (Input Size)(Depth), and Error ~ gate complexity. So for a finite error, there is a trade-off between input size and depth.
- We naturally prefer a larger input size for a potential quantum advantage.
- So is there a shallow quantum circuit with a provable quantum advantage? Is there a shallow, non-oracular generalization of Bernstein-Vazirani?

2D HLF: Problem Statement

- We are given a quadratic form $q:\left(\mathbb{F}_{2}\right)^{n} \rightarrow \mathbb{Z}_{4}$ defined as $q(x)=\left(x^{T} A x+b^{T} x\right)(\bmod 4)$
- So, Inputs: $b \in\{0,1\}^{n}, A \in\{0,1\}^{n \times n}$ binary symmetric.
 Also, A is the adjacency matrix of a 2D grid of n nodes.
- Define a set $\mathscr{L}_{q}=\left\{x \in\left(\mathbb{F}_{2}\right)^{n} \mid q(x \oplus y)=q(x)+q(y) \quad \forall y \in\left(\mathbb{F}_{2}\right)^{n}\right\}$

2D HLF: Problem Statement

- Lemma 1: \mathscr{L}_{q} is a linear subspace of $\left(\mathbb{F}_{2}\right)^{n}$ and $q(x) \in\{0,2\} \quad \forall x \in \mathscr{L}_{q}$. Additionally, $\exists z \in\left(\mathbb{F}_{2}\right)^{n}$ such that $q(x)=2 z^{T} x(\bmod 4) \forall x \in \mathscr{L}_{q}$
- So, Output: Secret string $z \in\{0,1\}^{n}$

Proof of Lemma 1

- Proof: Take any $x, x^{\prime} \in \mathscr{L}_{q}$. Does $x \oplus x^{\prime} \in \mathscr{L}_{q}$?
- $q\left(x \oplus x^{\prime} \oplus y\right)=q(x)+q\left(x^{\prime} \oplus y\right)=q\left(x \oplus x^{\prime}\right)+q(y) \quad \forall y \in\left(\mathbb{F}_{2}\right)^{n}$ $\Rightarrow x \oplus x^{\prime} \in \mathscr{L}_{q}$. Hence $\mathscr{L}_{q} \subset\left(\mathbb{F}_{2}\right)^{n}$ is a linear subspace
- Also, for $y=x, q(x \oplus x)=q(0)=0=2 q(x)(\bmod 4)$

$$
\Rightarrow q(x) \in\{0,2\} \quad \forall x \in \mathscr{L}_{q}
$$

Proof of Lemma 1: Hidden Linearity

. Now define a function $l: \mathscr{L}_{q} \rightarrow\left(\mathbb{F}_{2}\right)^{n}$ as $l(x)=\left\{\begin{array}{l}1 \text { if } q(x)=2 \\ 0 \text { if } q(x)=0\end{array}\right.$

- Then $q(x)=2 l(x) \quad \forall x \in \mathscr{L}_{q}$, so $l(x \oplus y)=l(x) \oplus l(y) \quad \forall x, y \in \mathscr{L}_{q}$
- Hence $l(x)$ is linear modulo 2

$$
\begin{aligned}
& \Rightarrow l(x)=z^{T} x(\bmod 2) \forall x \in \mathscr{L}_{q}, \text { some } z \in\left(\mathbb{F}_{2}\right)^{n} \\
& \Rightarrow q(x)=2 z^{T} x(\bmod 4) \forall x \in \mathscr{L}_{q}, \text { some } z \in\left(\mathbb{F}_{2}\right)^{n}
\end{aligned}
$$

Remark

- Unlike Bernstein-Vazirani, the secret string z is not unique. This is because the linearity is restricted to a subspace \mathscr{L}_{q} of $\left(\mathbb{F}_{2}\right)^{n}$.
- If we consider any $y \in \mathscr{L}_{q}^{\perp}$, the orthogonal complement of \mathscr{L}_{q}, then $z^{\prime}=z \oplus y$ is also a valid secret string.
- In fact, there are $\left|\mathscr{L}_{q}^{\perp}\right|$ valid secret strings. The quantum algo for 2D HLF gives a uniform superposition over all valid secret strings as output.

The quantum algorithm

$$
\left.\begin{array}{rl}
C Z(A) & =\prod_{i<j} C Z_{i j}^{A_{i j}} \\
S(b) & \begin{array}{l}
\text { (can be implemented with depth } \\
\text { for any subgraph of the 2D grid) }
\end{array} \\
\Theta_{j} S_{j}^{b_{j}} & \text { (just one layer) } \\
U_{q}|x\rangle & =i^{q(x)}|x\rangle \quad \forall x \in\{0,1\}^{n}
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { Total Depth } \leq 7 \\
& \forall \text { instances of } 2 \boldsymbol{2}
\end{aligned}
$$

Key technique in the algo

$$
S(b) C Z(A)|x\rangle=i^{\left(x^{T} A x+b^{T} x\right)}|x\rangle \quad \forall x \in\{0,1\}^{n}
$$

$$
S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)
$$

- Proof: Note that we do expect $S(b) C Z(A)|x\rangle$ to differ from
$|x\rangle$ only by a phase, since

$$
\begin{aligned}
& \{|00\rangle,|01\rangle,|10\rangle,|11\rangle\} \xrightarrow{C Z}\{|00\rangle,|01\rangle,|10\rangle,-|11\rangle\} \\
& \{|0\rangle,|1\rangle\} \xrightarrow{S}\{|0\rangle, i|1\rangle\}
\end{aligned}
$$

$$
C Z=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

- So $C Z_{i j}\left|x_{i} x_{j}\right\rangle=(-1)^{A_{i j} x_{i} x_{j}}\left|x_{i} x_{j}\right\rangle$ where $x=x_{1} x_{2} \ldots x_{n}$

$$
\Rightarrow C Z(A)|x\rangle=\prod_{i<j} C Z_{i j}|x\rangle=(-1)^{\sum A_{i j} x_{i} x_{j}}|x\rangle=(-1)^{\frac{1}{2} x^{T} A x}|x\rangle=i^{x^{T} A x}|x\rangle
$$

- Similarly, $S_{j}\left|x_{j}\right\rangle=i^{b_{j} x_{j}}\left|x_{j}\right\rangle \Rightarrow S(b)|x\rangle=i^{b^{x} x}|x\rangle$

Analysis of the algo

$$
\left|0^{n}\right\rangle \xrightarrow{H^{\otimes n}} \sum_{x \in\left(\mathbb{F}_{2}\right)^{n}}|x\rangle \xrightarrow{U_{q}} \sum_{x \in\left(\mathbb{F}_{2}\right)^{n}} i^{q(x)}|x\rangle \xrightarrow{H^{\otimes n}} \sum_{y \in\left(\mathbb{F}_{2}\right)^{n}}\left(\sum_{x \in\left(\mathbb{F}_{2}\right)^{n}} i^{\left(q(x)+2 y^{T} x\right)}\right)|y\rangle
$$

- Where we define a Partial Fourier Transform w.r.t any $\mathscr{L} \subseteq \mathbb{F}_{2}^{n}$ and any $y \in\{0,1\}^{n}$ as

$$
\equiv \sum_{y \in\left(\mathbb{F}_{2}\right)^{n}} \Gamma\left(\mathbb{F}_{2}^{n}, y\right)|y\rangle
$$

$$
\Gamma(\mathscr{L}, y) \equiv \sum_{x \in \mathscr{L}} i^{\left(q(x)+2 y^{T} x\right)}
$$

. So $P(y)=\frac{\left|\Gamma\left(\mathbb{F}_{2}^{n}, y\right)\right|^{2}}{4^{n}} \forall y \in\{0,1\}^{n}$

Analysis of the algo

- Note that $\mathbb{F}_{2}^{n}=\mathscr{L}_{q}+\mathscr{L}_{q}^{\perp}$, and $\left|\mathscr{L}_{q}\right|\left|\mathscr{L}_{q}^{\perp}\right|=\left|\mathbb{F}_{2}^{n}\right|=2^{n}$
- So it can be seen that $\Gamma\left(\mathbb{F}_{2}^{n}, y\right)=\Gamma\left(\mathscr{L}_{q}, y\right) \Gamma\left(\mathscr{L}_{q}^{\perp}, y\right)$
. But $\Gamma\left(\mathscr{L}_{q}, y\right)=\sum_{x \in \mathscr{L}_{q}} i^{2(z \oplus y)^{T} x}= \begin{cases}\left|\mathscr{L}_{q}\right| & , y \in z \oplus \mathscr{L}_{q}^{\perp} \\ 0 & , \text { otherwise }\end{cases}$
- Also, $\Gamma\left(\mathscr{L}_{q}^{\perp}, y\right)=\left|\mathscr{L}_{q}^{\perp}\right|^{1 / 2} \quad \forall y \in\{0,1\}^{n} \quad$ [involved proof!]

Analysis of the algo

. So finally, we find that $P(y)= \begin{cases}\frac{1}{\left\lvert\, \mathscr{L}_{\left.\frac{1}{q} \right\rvert\,}\right.} & \text { if } y \in z \oplus \mathscr{L}_{q}^{\perp} \\ 0 & \text { otherwise }\end{cases}$

- Hence, just before measurement,

$$
\text { state }=\frac{1}{\left|\mathscr{L}_{q}^{\perp}\right|} \sum_{y \in z \oplus \mathscr{L}_{q}^{\perp}}|y\rangle \xrightarrow{\text { measure }}\left|z^{\prime}\right\rangle
$$

- such that $z^{\prime} \in z \oplus \mathscr{L}{ }_{q}^{\perp}$, which of course includes z as well.

Classical depth lower bound

- Lemma 2: C_{n} be a classical probabilistic circuit with gate fan-in $\leq K$. If C_{n} solves all size-n instances of 2D HLF with error probability $<1 / 8$, then depth $\left(C_{n}\right) \geq \frac{\log n}{16 \log K}$
- Rough idea: There are special instances of 2D HLF, specifically when A is the adjacency matrix of an even length cyclic sub-graph of the 2D grid, when the input-output correlations of 2D HLF exhibit strong non-locality, which cannot be reproduced by constant depth circuits.

Take aways

- 2D HLF is a specially designed problem to demonstrate a computational advantage with constant depth quantum circuits.
- Classically, the authors prove a depth lower bound of $\Omega(\log n)$ for bounded fan-in boolean circuits. Quantumly, all instances of 2D HLF can be solved by depth-7 quantum circuits.
- 2D HLF is still in P, so a practical time advantage hasn't been demonstrated yet.
- However, the analysis now creates an explicit separation between $Q N C^{0}$ and $N C^{0}$.

