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Introduction

Michael Wolf et. al. (2007) [1]

Every Quantum Channel T is a completely positive map defined
by ρ→ T (ρ) = TrE [U(ρ⊗ ρE)U †].
An equivalent representation being in terms of Kraus operators.

T (ρ) =

dE∑
i=1

AiρA
†
i

∑
i

A†iAi = I

We define its conjugate channel as T̃ = TrS [U(ρ⊗ ρE)U †].
The Kraus operators Ãi of T̃ are related to those of T by

(Ãi)kl = (Ak)il

Christopher King et. al. (2005) [2]
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Quantum Capacity

Quantum Capacity Q(T ) is the maximum number of qubits that
can be communicated through a quantum channel T , per use of
the channel, asymptotically.

The Quantum Capacity theorem [3] states that

Q(T ) = lim
n→∞

1

n
sup
ρ
J(T⊗n, ρ) (1)

where a new quantity called coherent information is introduced as

J(T, ρ) = S(T (ρ))− S(T̃ (ρ)) (2)

S(ρ) is the standard Von-Neumann Entropy given by

S(ρ) = −Tr(ρ log2 ρ) (3)
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Challenges in evaluating quantum capacity

Evaluating Q(T ) is a challenging task in general since

J is not a globally concave function in general.
The regularization n→∞ is necessary since J is not subadditive in
general.

However these obstacles can be avoided for channels with small
environment, with the main tool being the degradability of the
channel.
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Degradability of a channel

A channel T is said to be degradable if it can simulate its
conjugate. This is in the sense that
∃ a channel φ such that T̃ = φ ◦ T .

Similarly, a channel T is anti-degradable if T̃ is degradable, i.e.
∃ a channel Ω s.t. T = Ω ◦ T̃ .

Lemma

If T is a degradable channel, then J(T, ρ) is subadditive and concave,
and hence Q(T ) = supρ J(T, ρ). If T is anti-degradable, then Q(T ) = 0.
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Dual condition for degradability

First note that
Degradability of T ⇐⇒ complete positivity of φ = (T̃ ◦ T−1) and
Anti-degradability ⇐⇒ complete positivity of φ−1

Now recall that Channel - State Duality [4] assigns a unique
bipartite state τ = (T ⊗ I)(ω) to each map T , where
ω =

∑d
i,j=1 |ii

〉〈
jj| is an unnormalized maximally entangled state.

(Choi-Jamiolkowski isomorphism)

Further, corresponding to each such state τ is a unique Transfer
Matrix τΓ defined by 〈

ij|τΓ|kl
〉

=
〈
ik|τ |jl

〉
(4)
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Dual Condition for degradability

Two results emerge from the correspondence described in the
previous slide:

There is a bijective correspondence between maps and transfer
matrices.
Complete positivity of T ⇐⇒ τΓ ≥ 0

Degradability of T is equivalent to
Complete Positivity of φ = (T̃ ◦ T−1) ⇐⇒ τφ = [τ̃Γ(τΓ)−1]Γ ≥ 0

Similarly anti-degradabality of a channel T is equivalent to
positivity of τφ−1
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Qubit Channels

Now we restrict attention to d = dE = 2, i.e a single qubit system
with a single qubit environment.

According Ruskai et. al. (2002) [5], two channels T and T ′ have
the same capacity if they differ just by unitaries at the input and
output.

T ′(ρ) = V T (UρU †)V † (5)

Every such channel has a normal form in terms of the Kraus
operators

A1 =

(
cosα 0

0 cosβ

)
A2 =

(
0 sinβ

sinα 0

)
(6)

Observe that for α = β, we have a bit-flip channel. And for α = 0,
we have an amplitude damping channel with p = sin2 β
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Qubit Channels

Computing the matrices τφ and τφ−1 and determining their
eigenvalues, it is found that their spectra are as follows

spec(τφ) = {0, 0, λ1, λ2}, spec(τφ−1) = {0, 0, λ̃1, λ̃2} (7)

where
λ1

λ2
= − λ̃1

λ̃2

=
cos 2α

cos 2β
(8)

Now note that Tr(τφ) = Tr(τφ−1) = d > 0 since φ and φ−1 are
trace preserving. Hence for both matrices, atmost one eigenvalue
is negative.

This leads to conclude

τφ > 0 ⇐⇒ cos 2α

cos 2β
> 0, τφ−1 > 0 ⇐⇒ cos 2α

cos 2β
≤ 0 (9)
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Qubit Channels

We hence have

Q(T ) =

{
supρ J(T, ρ), cos 2α

cos 2β > 0

0, otherwise
(10)

Now it is observed that for channels T described by Kraus
operators A1 and A2,

ZT (ρ)Z = T (ZρZ) (11)

ZT̃ (ρ)Z = T̃ (ZρZ) (12)

Sriram Gopalakrishnan PH5842 April 26, 2019 10 / 16



Qubit Channels

To find a supremum for J , note that it is concave in ρ

J(θρ1 + (1− θ)ρ2) ≥ θJ(ρ1) + (1− θ)J(ρ2) (13)

For θ = 1
2 , ρ1 = ρ, ρ2 = ZρZ, we have

J(ρ) ≤ J
(

1

2
(ρ+ ZρZ)

)
(14)

Noting that (ρ+ ZρZ) is always diagonal, WLOG we can
substitute

ρ = p|0
〉〈

0|+ (1− p)|1
〉〈

1| (15)

to maximize J .
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The Result

Substituting this ρ in the equation for J(T, ρ), we hence have

Q(T ) = max
p∈[0,1]

[h(p cos2 α+(1−p)sin2β)−h(p sin2 α+(1−p) sin2 β)]

(16)
wherever cos 2α

cos 2β > 0.

h(p) is the binary shannon entropy

h(p) = −p log2 p− (1− p) log2(1− p) (17)
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The Result

Figure 1: The quantum capacity of extremal qubit channels, as derived by
Michael Wolf et. al. [1]
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