Quantum Capacity of channels with small environment

Sriram Gopalakrishnan

Department of Physics Indian Institute of Technology Madras

April 26, 2019

Introduction

• Michael Wolf et. al. (2007) [1]

• Every Quantum Channel T is a completely positive map defined by $\rho \to T(\rho) = \text{Tr}_E[U(\rho \otimes \rho_E)U^{\dagger}].$

An equivalent representation being in terms of Kraus operators.

$$T(\rho) = \sum_{i=1}^{d_E} A_i \rho A_i^{\dagger} \qquad \sum_i A_i^{\dagger} A_i = I$$

• We define its conjugate channel as $\tilde{T} = \text{Tr}_S[U(\rho \otimes \rho_E)U^{\dagger}]$. The Kraus operators \tilde{A}_i of \tilde{T} are related to those of T by

$$(\tilde{A}_i)_{kl} = (A_k)_{il}$$

Christopher King et. al. (2005) [2]

Quantum Capacity

- Quantum Capacity Q(T) is the maximum number of qubits that can be communicated through a quantum channel T, per use of the channel, asymptotically.
- The Quantum Capacity theorem [3] states that

$$Q(T) = \lim_{n \to \infty} \frac{1}{n} \sup_{\rho} J(T^{\otimes n}, \rho)$$
(1)

where a new quantity called *coherent information* is introduced as

$$J(T,\rho) = S(T(\rho)) - S(\tilde{T}(\rho))$$
⁽²⁾

• $S(\rho)$ is the standard Von-Neumann Entropy given by

$$S(\rho) = -\operatorname{Tr}(\rho \log_2 \rho) \tag{3}$$

- Evaluating Q(T) is a challenging task in general since
 - J is not a globally concave function in general.
 - The regularization $n \to \infty$ is necessary since J is not subadditive in general.
- However these obstacles can be avoided for channels with small environment, with the main tool being the *degradability* of the channel.

- A channel T is said to be *degradable* if it can simulate its conjugate. This is in the sense that
 ∃ a channel φ such that T̃ = φ ∘ T.
- Similarly, a channel T is anti-degradable if \tilde{T} is degradable, i.e. \exists a channel Ω s.t. $T = \Omega \circ \tilde{T}$.

Lemma

If T is a degradable channel, then $J(T, \rho)$ is subadditive and concave, and hence $Q(T) = \sup_{\rho} J(T, \rho)$. If T is anti-degradable, then Q(T) = 0.

• First note that Degradability of T \iff complete positivity of $\phi = (\tilde{T} \circ T^{-1})$ and Anti-degradability \iff complete positivity of ϕ^{-1}

- Now recall that Channel State Duality [4] assigns a unique bipartite state $\tau = (T \otimes I)(\omega)$ to each map T, where $\omega = \sum_{i,j=1}^{d} |ii\rangle \langle jj|$ is an unnormalized maximally entangled state. (Choi-Jamiolkowski isomorphism)
- Further, corresponding to each such state τ is a unique *Transfer* Matrix τ^{Γ} defined by

$$\langle ij|\tau^{\Gamma}|kl\rangle = \langle ik|\tau|jl\rangle$$
 (4)

- Two results emerge from the correspondence described in the previous slide:
 - There is a bijective correspondence between maps and transfer matrices.
 - Complete positivity of $T \iff \tau^{\Gamma} \ge 0$
- Degradability of T is equivalent to Complete Positivity of $\phi = (\tilde{T} \circ T^{-1}) \iff \tau_{\phi} = [\tilde{\tau}^{\Gamma}(\tau^{\Gamma})^{-1}]^{\Gamma} \ge 0$
- Similarly anti-degradabality of a channel T is equivalent to positivity of $\tau_{\phi^{-1}}$

- Now we restrict attention to $d = d_E = 2$, i.e a single qubit system with a single qubit environment.
- According Ruskai et. al. (2002) [5], two channels T and T' have the same capacity if they differ just by unitaries at the input and output.

$$T'(\rho) = VT(U\rho U^{\dagger})V^{\dagger}$$
(5)

• Every such channel has a normal form in terms of the Kraus operators

$$A_1 = \begin{pmatrix} \cos \alpha & 0 \\ 0 & \cos \beta \end{pmatrix} \quad A_2 = \begin{pmatrix} 0 & \sin \beta \\ \sin \alpha & 0 \end{pmatrix} \tag{6}$$

• Observe that for $\alpha = \beta$, we have a bit-flip channel. And for $\alpha = 0$, we have an amplitude damping channel with $p = \sin^2 \beta$

Qubit Channels

• Computing the matrices τ_{ϕ} and $\tau_{\phi^{-1}}$ and determining their eigenvalues, it is found that their spectra are as follows

$$spec(\tau_{\phi}) = \{0, 0, \lambda_1, \lambda_2\}, \qquad spec(\tau_{\phi^{-1}}) = \{0, 0, \tilde{\lambda_1}, \tilde{\lambda_2}\}$$
 (7)

where

$$\frac{\lambda_1}{\lambda_2} = -\frac{\lambda_1}{\lambda_2} = \frac{\cos 2\alpha}{\cos 2\beta} \tag{8}$$

- Now note that $\operatorname{Tr}(\tau_{\phi}) = \operatorname{Tr}(\tau_{\phi^{-1}}) = d > 0$ since ϕ and ϕ^{-1} are trace preserving. Hence for both matrices, atmost one eigenvalue is negative.
- This leads to conclude

$$\tau_{\phi} > 0 \iff \frac{\cos 2\alpha}{\cos 2\beta} > 0, \qquad \tau_{\phi^{-1}} > 0 \iff \frac{\cos 2\alpha}{\cos 2\beta} \le 0$$
(9)

• We hence have

$$Q(T) = \begin{cases} \sup_{\rho} J(T, \rho), & \frac{\cos 2\alpha}{\cos 2\beta} > 0\\ 0, & \text{otherwise} \end{cases}$$
(10)

• Now it is observed that for channels T described by Kraus operators A_1 and A_2 ,

$$ZT(\rho)Z = T(Z\rho Z) \tag{11}$$

$$Z\tilde{T}(\rho)Z = \tilde{T}(Z\rho Z) \tag{12}$$

• To find a supremum for J, note that it is concave in ρ

$$J(\theta\rho_1 + (1-\theta)\rho_2) \ge \theta J(\rho_1) + (1-\theta)J(\rho_2)$$
(13)

For $\theta = \frac{1}{2}$, $\rho_1 = \rho$, $\rho_2 = Z\rho Z$, we have

$$J(\rho) \le J\left(\frac{1}{2}(\rho + Z\rho Z)\right) \tag{14}$$

• Noting that $(\rho + Z\rho Z)$ is always diagonal, WLOG we can substitute

$$\rho = p|0\rangle\langle 0| + (1-p)|1\rangle\langle 1| \tag{15}$$

to maximize J.

• Substituting this ρ in the equation for $J(T, \rho)$, we hence have

$$Q(T) = \max_{p \in [0,1]} [h(p\cos^2\alpha + (1-p)\sin^2\beta) - h(p\sin^2\alpha + (1-p)\sin^2\beta)]$$
(16)

wherever $\frac{\cos 2\alpha}{\cos 2\beta} > 0.$ • h(p) is the binary shannon entropy

$$h(p) = -p \log_2 p - (1-p) \log_2(1-p)$$
(17)

The Result

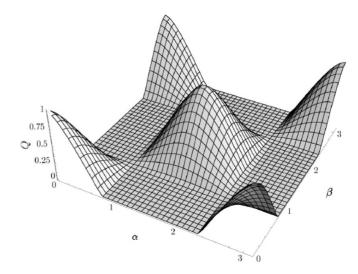


Figure 1: The quantum capacity of extremal qubit channels, as derived by Michael Wolf et. al. [1]

References I

- Michael M Wolf and David Perez-Garcia. "Quantum capacities of channels with small environment". In: *Physical Review A* 75.1 (2007), p. 012303.
- Christopher King et al. "Properties of conjugate channels with applications to additivity and multiplicativity". In: arXiv preprint quant-ph/0509126 (2005).
 - Igor Devetak. "The private classical capacity and quantum capacity of a quantum channel". In: *IEEE Transactions on Information Theory* 51.1 (2005), pp. 44–55.
- Min Jiang, Shunlong Luo, and Shuangshuang Fu. "Channel-state duality". In: *Physical Review A* 87.2 (2013), p. 022310.
- Mary Beth Ruskai, Stanislaw Szarek, and Elisabeth Werner. "An analysis of completely-positive trace-preserving maps on M2". In: *Linear Algebra and its Applications* 347.1-3 (2002), pp. 159–187.

Igor Devetak and Peter W Shor. "The capacity of a quantum channel for simultaneous transmission of classical and quantum information". In: *Communications in Mathematical Physics* 256.2 (2005), pp. 287–303.

Thank You