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Motivation

 The Gibbs State of a many-qubit system encodes information about its underlying
Hamiltonian

 Helps better understand Statistical Mechanics

 Sampling the gibbs state can be used to “learn” an approximate underlying Hamiltonian
[AAKS 21, arXiv:2004.07266, Nature]
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Problem Statement

Given: An n-qubit Hamiltonian H = H e CVN (N = 2") as a “frustration-free” projector

decomposition K
k=1

Where K = poly(n) and each I1, is a projector = IT; =11, Vk
Also given: A quantum computer in the state | 0") with access to poly(n) ancillas

A Hamiltonian is “frustration-free” if the ground state of H is also the ground state of I, V&

Aside: Not all local Hamiltonians with commuting terms are frustration-free



Problem Statement

N—-1
Task (Informal): Prepare P = _ h//jij‘ <H _ Z AT >
j=0

More formally: Give a description of a unitary V such that

tra (V (1070”1 ® [0)015) V7) =

L
so that 117~ pol |, < ¢

Subscript “a” represents the full set of ancillary qubits. We would like |a| < poly(#n) qubits

All the ancillaries are traced out at the end of the computation. What remains must be e-close to the
Gibbs State in trace norm



Improvement over previous work

e [PW 09, arXiv:0905.2199] use QPE to find effective gate complexity of V' as

6
(fs \[ polylog(e~ 1))

« [CS 17, present work] use several tools (but excluding QPE) to find gate complexity of V as

o\Fona(7)]

» Polynomial improvement in f#, exponential improvement in 1/¢



Algorithm: Step 1: Spectral Gap Amplification

« Construct ﬁacting on a larger Hilbert space [(n + log K') qubits] as

P . K
<H=zaknk) A=Y /&L, ® (k0] +0)k]),
k=1 k=1

e |In arough sense, ﬁ ~ 4/ H in this larger Hilbert space

(H?|¢) ® |0), = (H|¢)) ®0),, forall states |¢) € C*

. This is called “Spectral Gap Amplification”. If gap(H) = A and gap(ﬁ) = A, then A" > Q) (\/ A) if H is
frustration-free.

e [Somma Boixo 11, arXiv:1110.2494]



Algorithm: Step 2: LCU iIn larger Hilbert space

« Denote M, = (\k)(0\+\0)(k\)
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l . .
Now note by Euler’s formula that M, = 5 (e~ M2 — imMI2)

Also, for any projector 11, , there exists a unitary U, s.t. 11, = > (1 T Uk)
k=1 k=1

. Here K = 4K, and a; & Tfk can be directly expressed using a;, and U,, M, respectively.

« Takeaway from Step 1+Step2: Given a projector decomposition of H, we can explicitly construct ﬁas
a Linear Combination of Unitaries (LCU) in the larger Hilbert space



Algorithm: Step 3: “Hubbard-Stratonovich Transformation” (HST)

* We painstakingly constructed ﬁfrom H . What benefit do we gain out of this?

o EXxpress e ~PHIZ (~gibbs state) purely in terms of e_\/ﬂT{, and hence e_\/BH

1 (% 2
e PHIZ = J dy e™"? exp(—iy\/fH) |HST ]

271' — 00

» Integral needs v/ H, we instead use H !

 However y is a continuous variable. Hence we have to discretize the HST
integral into a finite sum, which has the LCU form. Continued next slide



Algorithm: Step 3 continued: Discretize HST

* Lemma (informal): |

— )2
Xﬁ — Z CjeXp <—lyj\/B H) Cj = 5)7 e Y] /2

2T j=—J

s e-close (in L, norm) to e 7> over its action on any state |¢)|0) a € cCV®Ch

" j=0|, 110 log(e™")
p

= | [(X;— e P72) | $) | 0),, || < O(e)




Algorithm: Step 4: Hamiltonian Simulation
* Use cutting-edge Hamiltonian Simulation, like [BCCKS 14, arXiv:1412.4687]
to approximate exp(—iyj\/ﬁﬁ) foreach j€ {—J,... J} byan

€-close (in spectral norm) unitary construction W] so that
J
Xﬂ ~ Z CJ-W}
j==J

« Example of how such a W] Is constructed”? Continued next slide
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Algorithm: Step 4: Construct W] (example)

—1Ht

K
» Toget W ¢-close to e given  H= ) U,
k=1

K
) Assume query access to 0=NT. & |k
with |a,| = O(log K) ancillas Z; ¢ ® [ ‘“2

i) Use [BCCKS 14] to construct W with optimal query complexity

» Total gate complexity of W is equal to

log(z/€) ,
O (K + CylogK)r with =
log log(z/€)
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Algorithm: Step 5: Implement X/, | ¢) for maximally entangled | )

At this point, we know {c¢;} as well as gate constructions of { W;} such that
Xp = chWj s e-close to e PH”?.

N—1
Z |6) | o), with two more new sets of
4

1
\/N o=0

ancillas: |a;| =log(2/+1) & |a,| =n qubits, where the | a;| ancillas act as controls for an LCU
protocol

Now implement X;|¢) for |¢) =

2
Result:  X;[¢) = e-close to e P12 ) and we know that ¢ % | ¢) = Gibbs state @ temp —

p
Note: |a| = (|a;|+ |a|+ |ay| +|a,|) =n+log(K*(2J + 1)) ancillas used in total
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Algorithm: Step 6: Measure and Stop

) (Xﬁwbxcwag)
p = tawaa, | ————
[ X5] ) ||

satisfies ||p —ps|| £ O(e)



Summary

e A quantum algorithm for Gibbs state preparation was constructed using
several tricks including SGA, LCU, AA and fourier analysis.

* Relative to [Poulin Wocjan 09], authors prove improvements in gate
complexity

Thank you for listening!
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