A quantum algorithm for Gibbs state preparation

Based on arXiv:1603.02940 [Chowdhury \& Somma 2017] [CS 17]

Sriram Gopalakrishnan

August 5, 2021

Motivation

- The Gibbs State of a many-qubit system encodes information about its underlying Hamiltonian
- Helps better understand Statistical Mechanics
- Sampling the gibbs state can be used to "learn" an approximate underlying Hamiltonian [AAKS 21, arXiv:2004.07266, Nature]

Problem Statement

- Given: An n-qubit Hamiltonian $H=H^{\dagger} \in \mathbb{C}^{N \times N}\left(N=2^{n}\right)$ as a "frustration-free" projector decomposition

$$
H=\sum_{k=1}^{K} \alpha_{k} \Pi_{k}
$$

- Where $K=\operatorname{poly}(n)$ and each Π_{k} is a projector $\Rightarrow \Pi_{k}^{2}=\Pi_{k} \quad \forall k$
- Also given: A quantum computer in the state $\left|0^{n}\right\rangle$ with access to poly (n) ancillas
- A Hamiltonian is "frustration-free" if the ground state of H is also the ground state of $\Pi_{k} \forall k$
- Aside: Not all local Hamiltonians with commuting terms are frustration-free

Problem Statement

- Task (Informal): Prepare

$$
\rho_{G}=\frac{e^{-\beta H}}{\operatorname{tr}\left(e^{-\beta H}\right)}=\frac{e^{-\beta H}}{Z}=\sum_{j=0}^{N-1} \frac{e^{-\beta E_{j}}}{Z}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \quad\left(H=\sum_{j=0}^{N-1} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right)
$$

- More formally: Give a description of a unitary V such that

$$
\begin{gathered}
\operatorname{tra}\left(V\left(\left|0^{n}\right\rangle\left\langle 0^{n}\right| \otimes|0\rangle\left\langle\left. 0\right|_{\mathrm{a}}\right) V^{\dagger}\right)=\hat{\rho}\right. \\
\text { so that } \frac{1}{2}\left\|\hat{\rho}-\rho_{G}\right\|_{1} \leq \epsilon
\end{gathered}
$$

- Subscript "a" represents the full set of ancillary qubits. We would like $|a| \leq \operatorname{poly}(n)$ qubits
- All the ancillaries are traced out at the end of the computation. What remains must be ϵ-close to the Gibbs State in trace norm

Improvement over previous work

- [PW 09, arXiv:0905.2199] use QPE to find effective gate complexity of V as

$$
O\left(\frac{\beta^{6}}{\epsilon^{3}} \sqrt{\frac{N}{Z}} \operatorname{polylog}\left(\epsilon^{-1}\right)\right)
$$

- [CS 17, present work] use several tools (but excluding QPE) to find gate complexity of V as

$$
O\left(\sqrt{\frac{N \beta}{Z}} \operatorname{polylog}\left(\frac{1}{\epsilon} \sqrt{\frac{N \beta}{Z}}\right)\right)
$$

- Polynomial improvement in β, exponential improvement in $1 / \epsilon$

Algorithm: Step 1: Spectral Gap Amplification

- Construct \widetilde{H} acting on a larger Hilbert space $[(n+\log K)$ qubits] as

$$
\left(H=\sum_{k=1}^{K} \alpha_{k} \Pi_{k}\right) \quad \widetilde{H}=\sum_{k=1}^{K} \sqrt{\alpha_{k}} \Pi_{k} \otimes(|k\rangle\langle 0|+|0\rangle\langle k|)_{a_{1}}
$$

- In a rough sense, $\widetilde{H} \sim \sqrt{H}$ in this larger Hilbert space

$$
(\widetilde{H})^{2}|\phi\rangle \otimes|0\rangle_{a_{1}}=(H|\phi\rangle) \otimes|0\rangle_{a_{1}} \quad \text { for all states }|\phi\rangle \in \mathbb{C}^{2^{n}}
$$

- This is called "Spectral Gap Amplification". If $\operatorname{gap}(H)=\Delta$ and $\operatorname{gap}(\widetilde{H})=\Delta^{\prime}$, then $\Delta^{\prime} \geq \Omega(\sqrt{\Delta})$ if H is frustration-free.
- [Somma Boixo 11, arXiv:1110.2494]

Algorithm: Step 2: LCU in larger Hilbert space

- Denote $M_{k}=(|k\rangle\langle 0|+|0\rangle\langle k|)_{a_{1}}$

Now note by Euler's formula that $\quad M_{k}=\frac{i}{2}\left(e^{-i \pi M_{k} / 2}-e^{i \pi M_{k} / 2}\right)$
Also, for any projector Π_{k}, there exists a unitary U_{k} s.t. $\quad \Pi_{k}=\frac{1}{2}\left(I+U_{k}\right)$

$$
\Rightarrow \widetilde{H}=\sum_{k=1}^{K} \sqrt{\alpha_{k}} \Pi_{k} \otimes M_{k}=\sum_{k=1}^{\widetilde{K}} \widetilde{\alpha}_{k} \widetilde{U}_{k}
$$

- Here $\widetilde{K}=4 K$, and $\widetilde{\alpha}_{k} \& \widetilde{U}_{k}$ can be directly expressed using α_{k} and U_{k}, M_{k} respectively.
- Takeaway from Step 1+Step2: Given a projector decomposition of H, we can explicitly construct \widetilde{H} as a Linear Combination of Unitaries (LCU) in the larger Hilbert space

Algorithm: Step 3: "Hubbard-Stratonovich Transformation" (HST)

- We painstakingly constructed \widetilde{H} from H. What benefit do we gain out of this?
- Express $e^{-\beta H / 2}$ (\sim gibbs state) purely in terms of $e^{-\sqrt{\beta H}}$, and hence $e^{-\sqrt{\beta} \widetilde{H}}$

$$
e^{-\beta H / 2}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d y e^{-y^{2} / 2} \exp (-i y \sqrt{\beta H}) \quad[H S T]
$$

- Integral needs \sqrt{H}, we instead use \widetilde{H} !
- However y is a continuous variable. Hence we have to discretize the HST integral into a finite sum, which has the LCU form. Continued next slide

Algorithm: Step 3 continued: Discretize HST

- Lemma (informal):

$$
X_{\beta}=\frac{1}{\sqrt{2 \pi}} \sum_{j=-J}^{+J} c_{j} \exp \left(-i y_{j} \sqrt{\beta} \widetilde{H}\right) \quad c_{j}:=\delta y e^{-y_{j}^{2} / 2}
$$

is ϵ-close (in L_{2} norm) to $e^{-\beta H / 2}$ over its action on any state $|\phi\rangle|0\rangle_{a_{1}} \in \mathbb{C}^{N} \otimes \mathbb{C}^{K}$
if

$$
\begin{aligned}
& J=\Theta\left(\sqrt{\frac{| | H| |}{\beta}} \log \left(\epsilon^{-1}\right)\right) \\
& \quad \Rightarrow\left|\left|\left(X_{\beta}-e^{-\beta H / 2}\right)\right| \phi\right\rangle|0\rangle_{a_{1}}| | \leq \Theta(\epsilon)
\end{aligned}
$$

Algorithm: Step 4: Hamiltonian Simulation

- Use cutting-edge Hamiltonian Simulation, like [BCCKS 14, arXiv:1412.4687] to approximate $\exp \left(-i y_{j} \sqrt{\beta} \widetilde{H}\right)$ for each $j \in\{-J, \ldots J\}$ by an ϵ-close (in spectral norm) unitary construction W_{j} so that

$$
X_{\beta} \approx \sum_{j=-J}^{J} c_{j} W_{j}
$$

- Example of how such a W_{j} is constructed? Continued next slide

Algorithm: Step 4: Construct W_{j} (example)

- To get $W \epsilon$-close to $e^{-i \widetilde{H} t}$ given $\widetilde{H}=\sum_{k=1}^{\widetilde{K}} \widetilde{\alpha}_{k} \widetilde{U}_{k}$
i) Assume query access to with $\left|a_{2}\right|=O(\log K)$ ancillas

$$
\widetilde{Q}=\sum_{k=1}^{\widetilde{K}} \widetilde{U}_{k} \otimes|k\rangle\left\langle\left. k\right|_{a_{2}}\right.
$$

ii) Use [BCCKS 14] to construct W with optimal query complexity

- Total gate complexity of W is equal to

$$
O\left(\left(K+C_{U} \log K\right) \tau \frac{\log (\tau / \epsilon)}{\log \log (\tau / \epsilon)}\right) \quad \text { with } \quad \tau=|t| \sum_{k} \widetilde{\alpha}_{k}
$$

Algorithm: Step 5: Implement $X_{\beta}|\phi\rangle$ for maximally entangled $|\phi\rangle$

- At this point, we know $\left\{c_{j}\right\}$ as well as gate constructions of $\left\{W_{j}\right\}$ such that $X_{\beta}=\sum c_{j} W_{j}$ is ϵ-close to $e^{-\beta H / 2}$.
- Now implement $X_{\beta}|\phi\rangle$ for $|\phi\rangle=\frac{1}{\sqrt{N}} \sum_{\sigma=0}^{N-1}|\sigma\rangle|\sigma\rangle_{a_{4}}$ with two more new sets of ancillas: $\left|a_{3}\right|=\log (2 J+1) \quad \& \quad\left|a_{4}\right|=n$ qubits, where the $\left|a_{3}\right|$ ancillas act as controls for an LCU protocol
- Result: $X_{\beta}|\phi\rangle=\epsilon$-close to $e^{-\beta H / 2}|\phi\rangle$ and we know that $e^{-\beta H / 2}|\phi\rangle \equiv$ Gibbs state @ temp $\frac{2}{\beta}$
- Note: $|a|=\left(\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|+\left|a_{4}\right|\right)=n+\log \left(K^{2}(2 J+1)\right)$ ancillas used in total

Algorithm: Step 6: Measure and Stop

$$
\hat{\rho}=\operatorname{tr}_{a_{1} a_{2} a_{3} a_{4}}\left(\frac{X_{\beta}|\phi\rangle\langle\phi| X_{\beta}^{\dagger}}{\| X_{\beta}|\phi\rangle \mid \|^{2}}\right)
$$

satisfies $\left\|\hat{\rho}-\rho_{G}\right\| \leq \Theta(\epsilon)$

Summary

- A quantum algorithm for Gibbs state preparation was constructed using several tricks including SGA, LCU, AA and fourier analysis.
- Relative to [Poulin Wocjan 09], authors prove improvements in gate complexity

