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A quantum algorithm for Gibbs state preparation

Based on arXiv:1603.02940 [Chowdhury & Somma 2017] [CS 17]

1



Motivation
• The Gibbs State of a many-qubit system encodes information about its underlying 

Hamiltonian


• Helps better understand Statistical Mechanics


• Sampling the gibbs state can be used to “learn” an approximate underlying Hamiltonian 
[AAKS 21, arXiv:2004.07266, Nature]
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Nature viewpoint “Inside quantum black boxes” by Vedran Dunjko, 2021



Problem Statement
• Given: An -qubit Hamiltonian  ( ) as a “frustration-free” projector 

decomposition 


• Where  and each  is a projector 


• Also given: A quantum computer in the state  with access to  ancillas


• A Hamiltonian is “frustration-free” if the ground state of  is also the ground state of 


• Aside: Not all local Hamiltonians with commuting terms are frustration-free

n H = H† ∈ ℂN×N N = 2n

K = poly(n) Πk ⇒ Π2
k = Πk ∀k

|0n⟩ poly(n)

H Πk ∀k
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H =
K

∑
k=1

αkΠk



Problem Statement
• Task (Informal): Prepare 


• More formally: Give a description of a unitary  such that


• Subscript “ ” represents the full set of ancillary qubits. We would like  qubits


• All the ancillaries are traced out at the end of the computation. What remains must be -close to the 
Gibbs State in trace norm

V

a |a | ≤ poly(n)

ϵ
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ρG =
e−βH

tr(e−βH)
=

e−βH

Z
=

N−1

∑
j=0

e−βEj

Z
|ψj⟩⟨ψj | (H =

N−1

∑
j=0

Ej |ψj⟩⟨ψj |)

tra (V ( |0n⟩⟨0n | ⊗ |0⟩⟨0 |a) V†) = ̂ρ

so that  1
2

| | ̂ρ − ρG | |1 ≤ ϵ



Improvement over previous work

• [PW 09, arXiv:0905.2199] use QPE to find effective gate complexity of  as


• [CS 17, present work] use several tools (but excluding QPE) to find gate complexity of V as


• Polynomial improvement in , exponential improvement in  

V

β 1/ϵ
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O ( β6

ϵ3

N
Z

polylog(ϵ−1))

O
Nβ
Z

polylog ( 1
ϵ

Nβ
Z )



Algorithm: Step 1: Spectral Gap Amplification

• Construct  acting on a larger Hilbert space [  qubits] as


• In a rough sense,  in this larger Hilbert space 


• This is called “Spectral Gap Amplification”. If  and , then   if H is 
frustration-free. 


• [Somma Boixo 11, arXiv:1110.2494]

H̃ (n + log K)

H̃ ∼ H

gap(H) = Δ gap( H̃ ) = Δ′￼ Δ′￼ ≥ Ω ( Δ)

6

H̃ =
K

∑
k=1

αkΠk ⊗ ( |k⟩⟨0 | + |0⟩⟨k | )a1

( H̃ )2 |ϕ⟩ ⊗ |0⟩a1
= (H |ϕ⟩) ⊗ |0⟩a1

for all states  |ϕ⟩ ∈ ℂ2n

(H =
K

∑
k=1

αkΠk)



Algorithm: Step 2: LCU in larger Hilbert space

• Denote  
 
 
Now note by Euler’s formula that 
 
 
Also, for any projector  , there exists a unitary  s.t.  


• Here  and    &    can be directly expressed using   and    respectively.


• Takeaway from Step 1+Step2: Given a projector decomposition of , we can explicitly construct  as 
a Linear Combination of Unitaries (LCU) in the larger Hilbert space

Πk Uk

K̃ = 4K, α̃k Ũ k αk Uk, Mk

H H̃
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Mk =
i
2 (e−iπMk/2 − eiπMk/2)

Mk = ( |k⟩⟨0 | + |0⟩⟨k |)a1

Πk =
1
2 (I + Uk)

⇒ H̃ =
K

∑
k=1

αkΠk ⊗ Mk =
K̃

∑
k=1

α̃k Ũ k



Algorithm: Step 3: “Hubbard-Stratonovich Transformation” (HST)

• We painstakingly constructed  from What benefit do we gain out of this?


• Express   (~gibbs state) purely in terms of  , and hence  


• Integral needs , we instead use  !


• However  is a continuous variable. Hence we have to discretize the HST 
integral into a finite sum, which has the LCU form. Continued next slide

H̃ H .

e−βH/2 e− βH e− β H̃

H H̃

y
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e−βH/2 =
1

2π ∫
∞

−∞
dy e−y2/2 exp(−iy βH) [HST]



Algorithm: Step 3 continued: Discretize HST

• Lemma (informal):  
 
 
 
is -close (in  norm) to    over its action on any state   
 
if 

ϵ L2 e−βH/2 |ϕ⟩ |0⟩a1
∈ ℂN ⊗ ℂK
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J = Θ
| |H | |

β
log(ϵ−1)

Xβ =
1

2π

+J

∑
j=−J

cj exp (−iyj β H̃ ) cj := δy e−y2
j /2

⇒ | | (Xβ − e−βH/2) |ϕ⟩ |0⟩a1
| | ≤ Θ(ϵ)



Algorithm: Step 4: Hamiltonian Simulation
• Use cutting-edge Hamiltonian Simulation, like [BCCKS 14, arXiv:1412.4687] 

 
to approximate    for each   by an 
 
-close (in spectral norm) unitary construction    so that  


• Example of how such a    is  constructed? Continued next slide

exp(−iyj β H̃ ) j ∈ {−J, … J}

ϵ Wj

Wj
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Xβ ≈
J

∑
j=−J

cjWj



Algorithm: Step 4: Construct   (example)Wj

• To get    -close  to    given   
 
 
 
i)  Assume query access to 
   with  ancillas 
 
ii) Use [BCCKS 14]  to construct   with optimal query complexity


• Total gate complexity of   is  equal to   
 
 

W ϵ e−i H̃ t

|a2 | = O(log K)

W

W
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H̃ =
K̃

∑
k=1

α̃k Ũ k

Q̃ =
K̃

∑
k=1

Ũ k ⊗ |k⟩⟨k |a2

O ((K + CU log K)τ
log(τ/ϵ)

log log(τ/ϵ) ) with τ = | t |∑
k

α̃k



Algorithm: Step 5: Implement  for maximally entangled  Xβ |ϕ⟩ |ϕ⟩

• At this point, we know  as well as gate constructions of   such that  
  is  -close  to  .


• Now implement    for     with  two more new sets of  

 
ancillas: , where the  ancillas act as controls for an LCU 
protocol


• Result:      and we know that  


• Note:    ancillas used in total 
 

{cj} {Wj}
Xβ = ∑ cjWj ϵ e−βH/2

Xβ |ϕ⟩ |ϕ⟩ =
1

N

N−1

∑
σ=0

|σ⟩ |σ⟩a4

|a3 | = log(2J + 1) & |a4 | = n qubits |a3 |

Xβ |ϕ⟩ = ϵ-close to  e−βH/2 |ϕ⟩ e−βH/2 |ϕ⟩ ≡ Gibbs state @ temp 
2
β

|a | = ( |a1 | + |a2 | + |a3 | + |a4 | ) = n + log(K2(2J + 1))
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Algorithm: Step 6: Measure and Stop  
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̂ρ = tra1a2a3a4 (
Xβ |ϕ⟩⟨ϕ |X†

β

| |Xβ |ϕ⟩ | |2 )
satisfies  | | ̂ρ − ρG | | ≤ Θ(ϵ)



Summary

• A quantum algorithm for Gibbs state preparation was constructed using 
several tricks including SGA, LCU, AA and fourier analysis.


• Relative to [Poulin Wocjan 09], authors prove improvements in gate 
complexity
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Thank you for listening!


