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1 Introduction

Statistical Mechanics (SM) has been extremely successful in our understanding of nature, and has
been adapted to several different areas of science. The beauty of equilibrium SM is the fact that
a small number of fundamental quantities can be used to derive a plethora of interesting physical
properties. There are three basic mathematical objects that can for one: be formalized in different
ways to different physical systems, and additionally: be used to derive an abundance of other
important system properties such as entropy, free energy and so on. These basic objects are: the
density of states, the occupancy distribution, and the partition function.

Given a classical or quantum system described by a many-body Hamiltonian H, the eigen-
spectrum of H characterizes the density of states of the system, which is a function g(λ) that
counts how many eigenstates have eigenvalue λ, also called degeneracy. We then have an occu-
pancy distribution p(λ) that describes how likely it is for a single quasiparticle to occupy a state
with eigenvalue λ, or in the context of quantum information: how likely it is for a mixed state
to be in a pure state with eigenvalue λ when measured in the energy basis. Lastly, the partition
function Z is the sum

Z =
∑

λ:p(λ)g(λ)>0

e−βλ = tr(e−βH) (1)

which is a sum of exponentials over states that are allowed and can be occupied, and where inverse
temperature β = 1

kBT
is a measure of the equilibrium temperature T of the many-body system.

Empirically, at very low temperatures, the occupancy distribution p(λ) is strongly skewed
towards the ground state of H. Now, in a highly ideal situation, if we ”slowly heat” the system to
equilibriate at inverse temperature β, the occupancy distribution is known to be well described by
a gibbs distribution

p(λ) =
e−βλ

Z
(2)

This process is known as thermalization. In the context of quantum computing, we perform
unitary transformations on a system of artificial spins. At an elementary layer of abstraction,
the computation can be thought of as time-evolving an Ising-like Hamiltonian defined on a graph
G = (V,E) describing allowed two-qubit couplings. Not all two-qubit couplings are allowed due
to spatial restrictions on the electromagnetic fields used to implement these gates. Now, one may
argue in a similar fashion as the previous para that if we ”slowly heat” a quantum computer from
its ground state (say |0n〉) to a finite inverse temperature β, then the density matrix of the system
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should evolve to a gibbs state ρG defined as

ρG =
e−βH

tr(e−βH)
=

N−1∑
j=0

e−βEj

Z
|ψj〉 〈ψj| (3)

where the Hamiltonian is expanded in its eigenspace as H =
∑

j Ej |ψj〉 〈ψj| and N = 2n (Note
that the gibbs state is a mixed state, and can be thought of as an ensemble of pure states weighted
by the gibbs distribution).

Sadly, this is a bad argument for one overarching reason: interacting many-qubit systems are
never in equilibrium. Even at a fixed temperature, the moment we turn on couplings on the graph
G we mentioned earlier, we begin time evolving the system’s state with the unitary e−iHt if we
created a Hamiltonian H. Besides, this is a simplistic view of time evolution given the presence of
many unwanted degrees of freedom in a realistic system.

However, that said, it is very natural to consider the following artificial thermalization setting
at a fixed near-zero temperature introduced by Poulin and Wocjan in 2009 [1]. Suppose we as
problem solvers are given a mathematical description of a Hamiltonian H as a frustration-free
projector decomposition

H =
K∑
k=1

αkΠk (4)

So each Πk is hermitian and satisfies Π2
k = Πk, and the frustration-free property means that the

ground state of H is also a ground state of Πk for all k. We will require this property for technical
reasons as we’ll see later on. The sum here runs over K = poly(n) terms. Also suppose that we
are given a quantum computer in the state |0n〉 with the ability to incorporate polynomially many
ancillas into our computation.

Then, formally, the computational task of gibbs state preparation is to give a description of a
unitary V such that

ρ̂ = tra
(
V (|0n〉 〈0n| ⊗ |0〉 〈0|a)V

†) (5)

satisfies
1

2
‖ρ̂− ρG‖1 ≤ ε (6)

Basically, performing the computation on n qubits plus a certain number of ancillas ”a” and
then tracing out (measuring) all the ancillas should leave us with an n-qubit mixed state that is
ε-close to the gibbs state ρG (equation 3) in trace norm for an arbitrary given precision ε.

In previous work, Poulin and Wocjan used Phase Estimation (PE) to develop an algorithm for

this problem with gate complexity scaling as O
(
β6

ε3

√
N
Z

polylog(ε−1)
)

. In the present work [2], the

authors use several ideas to develop an algorithm that scales as O

(√
Nβ
Z

polylog

(
1
ε

√
Nβ
Z

))
.

In the next section, we’ll see how this algorithm works.

2 The Algorithm

The line of reasoning that motivates the approaches used in this algorithm can be explained as
follows.
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First, it is to be understood that in order to construct an approximation of the gibbs state e−βH

(upto normalization), we wish to develop a gate based approximation to the non-unitary matrix

e−
βH
2 . The rationale here is that applying e−

βH
2 to a ”suitably chosen” pure state can give us a

purification (HJW theorem) of the gibbs state e−βH . And hence, a partial trace over the ancillas of
that purification will give us the required mixed state e−βH . Of course we’ll have to see what that
”suitably chosen” pure state is and account for a unitary constructing it from |0n〉 plus ancillas.

So the basic goal of the algorithm now is to construct a gate based approximation of e−
βH
2 .

As already mentioned, this is a non-unitary matrix in general. However, a powerful result from
fourier analysis known as the Hubbard-Stratonovich transformation can be used to accurately

approximate e−
βH
2 as a linear combination of unitaries. The transformation can be invoked as

follows:

e−
βH
2 =

1√
2π

∫ ∞
−∞

dy e−
y2

2 e−iy
√
βH (7)

Notice that inside the integral, we have a term like e−iy
√
βH which is unitary. Although this is an

integral over a continuous variable y, we can easily discretize it, which we consider in Lemma 1.
The thing to worry about with the term e−iy

√
βH is the

√
H inside it. In the projector de-

composition H =
∑K

k=1 αkΠk, we do not in general enforce that the projectors Πk be mutually

orthogonal. So it is difficult in general to compute
√
H in the same Hilbert space as H.

Here is where the frustration-free property introduced in the context of Spectral Gap Amplifi-
cation [3] comes handy. We can construct a

√
H in a larger Hilbert space, as the matrix H̃, defined

as

H̃ =
K∑
k=1

√
αkΠk ⊗ (|k〉 〈0|+ |0〉 〈k|)a1 (8)

where we introduce an ancillary register a1 of size O(logK) qubits. It turns out that if H is

frustration-free, then H̃ has the same set of eigenstates as H ⊗ I, although with a larger spectral
gap.

In particular, if H has spectral gap ∆, and H̃ has spectral gap ∆̃, then ∆̃ ≥ Ω(
√

∆) according
to Spectral Gap Amplification. This square root equivalence of eigenstates allows one to note that

(H̃)2 |φ〉 ⊗ |0〉a1 = (H |φ〉)⊗ |0〉a1 for all |φ〉 ∈ C2n (9)

Hence, in a sense, the action of H̃ is equivalent to
√
H in this larger Hilbert space. So we can

replace
√
H in equation (7) by H̃ and subsequently discretize the integral as a linear combination

of unitaries.

Lemma 1: Consider the following discretization of equation (7) as the matrix Xβ

Xβ =
1√
2π

+J∑
j=−J

cj exp
(
−iyj

√
β H̃

)

where we use a step size denoted δy and total interval length 2Jδy. Also, cj = e−
y2j
2 δy and

yj = jδy. Then, if J = Θ(
√
‖H‖ β log(ε−1)), log(ε−1) ≥ 4, and ‖H‖ β ≥ 4, we will have an L2

norm ε-closeness as follows∥∥(Xβ − (e−βH/2 ⊗ I)
)
|φ〉|0〉a1

∥∥ ≤ ε/2 for all |φ〉 |0〉a1 ∈ CN ⊗ CK (10)
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We skip the proof, but it may be studied independently in the reference.

Essentially, the lemma states that the discretization is a good approximation to e−βH/2 if cer-
tain mild constraints on the required precision ε, the spectral norm of H, and the number of terms
J , are satisfied.

Hence, we now have an approximation Xβ to e−βH/2 that is a linear combination of unitaries

{e−iyj
√
βH̃} weighted by coefficients {cj} that is computed classically.

So our next task is to get a gate based approximation Wj of each unitary exp
(
−iyj
√
β H̃

)
in

the linear combination. Notice that each unitary entails time-evolving H̃ for time yj
√
β for each

j. Hence we invoke a suitable Hamiltonian Simulation algorithm as a subroutine for this purpose.
To proceed, we first express H̃ as a linear combination of unitaries. If we denote Mk :=

(|k〉 〈0|+ |0〉 〈k|)a1 , then note by Euler’s formula that

Mk =
i

2

(
e−iπMk/2 − eiπMk/2

)
(11)

Also note that for any projector Πk, we have a unitary Uk such that

Πk =
1

2
(I + Uk) (12)

If we substitute equations (11) and (12) into our definition of H̃ in equation (8), we can express

H̃ as a linear combination of unitaries expressible in terms of known quantities in the problem.

H̃ =
K∑
k=1

√
αkΠk ⊗Mk ≡

K̃∑
k=1

α̃kŨk (13)

It is easy to note that K̃ = 4K and α̃k =
√
αbk/4c, while Ũk is a unitary directly expressible in

terms of Uk and Mk.
Now we will use reference [4] to perform efficient Hamiltonian simulation. The algorithm

assumes the ability to implement the unitary Q̃ defined as

Q̃ =
K̃∑
k=1

Ũk ⊗ |k〉 〈k|a2 (14)

where we introduce a second set of ancillas a2 of size O(logK) qubits. The method uses queries to

Q̃ to approximate e−iH̃t. We will not go into further detail here, but [BCCKS 14] can be used to

develop gate constructions of unitaries Wj that approximate exp
(
−iyj
√
β H̃

)
for each j, with gate

complexity that scales linearly with K and logarithmically with the evolution time. Specifically,
the gate complexity of implementing each Wj will be

O

(
(K + CU logK)τ

log(τ/ε)

log log(τ/ε)

)
(15)

where τ = |t|
∑

k α̃k, and CU is the gate complexity of implementing each Ũk.
So at this point, we know both the coefficients {cj} and gate constructions of unitaries {Wj}

such that Xβ =
∑

j cjWj is ε-close to e−βH/2 over its action on the class of states we are interested
in. It is worth noting that Wj acts on a vector space of dimension O(n+ logK)
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We now have to develop an approximate gate construction of Xβ =
∑

j cjWj, which is a
linear combination of unitaries. For this, we invoke the Linear Combination of Unitaries (LCU)
algorithm [5] (which we studied in assignment 1) as a subroutine.

[The LCU protocol generally works by assuming the ability to implement the unitary

SW =
+J∑
j=−J

Wj ⊗ |j〉 〈j|a3 (16)

where we introduce our third set of ancillas a3 of size |a3| = O(log(2J + 1)) qubits.
It will also assume the ability to implement the unitary B that acts like

B |0|a3|〉 =
1√∑
j cj

∑
j

√
cj |j〉 (17)

so that it can implement R := (I ⊗ B†)SW (I ⊗ B) on an O(n+ log(K(2J + 1))) dimensional
register. Uses of R along with Amplitude Amplification can be used to prepare

∑
j cjWj |0〉 in the

first O(n+ logK) dimensional register ]
However, in this work, the LCU protocol is implemented in a more sophisticated setting. This

is where the ”suitably chosen” pure state we mentioned in the start comes into the picture.
The first step in the construction of the unitary V of equation (5) will involve preparing a

maximally entangled state

|φ〉 =
1√
N

N−1∑
σ=0

|σ〉|σ〉a4 (18)

where we introduce a set of ancillas a4 of size n qubits. The above state is equivalent to the
maximally entangled state (

∑
j |ψj〉 |ψj〉) for the eigenbasis of a positive Hermitian H.

We then implement Xβ |φ〉 via the LCU protocol introducing three more sets of ancillas
a1, a2 and a3 as previously discussed.

Then it can be seen that Xβ |φ〉 |0〉 approximates a purification of the gibbs state given by
e−βH/2 |φ〉 |0〉, and hence tracing out all the ancillas gives us an approximation of the Gibbs state.

3 Conclusion

In summary, the authors have developed a quantum algorithm for state preparation with an

effective gate complexity of O

(√
Nβ
Z

polylog

(
1
ε

√
Nβ
Z

))
. Although they do boast a polynomial

improvement in β, the key scaling with
√
N is still exponential. Nevertheless, they find that the

dependence on precision ε is only logarithmic, which corresponds to an exponential improvement
over previous work by Poulin and Wocjan [1].
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