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Abstract

This is a review of basic Quantum Mechanics and the variational methods used in Quantum
many-body theory.

The Schrodinger equation for a single particle of mass m is given by

−h̄2

2m
∇2ψ + V (r, t)ψ = ih̄

∂ψ

∂t

(time dependent form). For cases that are of interest to us , V (r, t) = V (r)(i.e independent
of time), and in those cases we are interested in solving the time independent equation for the
eigenstates of the hamiltonian, i.e solving the eigenvalue equation

−h̄2

2m
∇2ψ + V (r)ψ = Eψ

At a point in time , a permissible state can be represented as a linear combination of orthonormal
energy eigenstates of the Hamiltonian which is Hermitian. In that case , the time evolution of the

state is given by the equation |ψ(t)〉 = e−
it
h̄
Ĥ |ψ(0)〉.

Let an operator Ô of an observable(hence it is hermitian), commute with an operator, for some

other observable, say, Ô′,i.e,
[
Ô,Ô′

]
= 0,then, one can construct an orthonormal basis ,each element

of which is simultaneously an eigenstate of Ô and Ô′.

The Hydrogen Atom

The Hamiltonian for hydrogen is of the form

−h̄2

2m
∇2 − 1

4πεr
= Ĥ

which in the spherical polar coordinates presents itself as

− h̄2

2m
(
∂

r2∂r
(r2

∂

∂r
) +

1

r2sinθ

∂

∂θ
(sinθ

∂

∂θ
) +

1

r2sin2θ

∂2

∂φ2
)− e2

4πεr
= Ĥ

Now the operator for z-component of angular momentum, L̂z = −ih̄ ∂
∂z and that for the total angular

momentum, L̂2 = −h̄2[ 1
sinθ

∂
∂θ (sinθ ∂

∂θ )+ 1
sin2θ

∂2

∂φ2 ] can be shown to obey the commutation relations -

[L̂z, L̂2] = 0 and [L̂2, Ĥ] = 0. Now, the eigenfunctions of L̂z are of the form Φ(φ) = ceimφ where m is
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an integer(so that Φ(φ+2π) = Φ(φ)) and c is independent of φ. Clearly, the common eigenfunctions

of L̂zand L̂2 are of the form A(θ, φ) = kΘ(θ).eimφ, k being independent of θ and φ. Now, putting

this in the eigenvalue equation of L̂2, we obtain,

−h̄2[ 1

sinθ
(∂θ(sinθ ∂θΘ)) +

−m2

sin2θ
Θ] = λΘ

which reduces to the associated Legendre equation on the substitution z = cosθ, and has desirable
solutions of the form Θ(θ) = N ′l,mP

m
l (cosθ), where l = 0, 1, 2, 3... and −l ≤ m ≤ l , λ = h̄2l(l + 1).

Now, we can write for the angular part,

Al,m(θ, φ) = Nl,mP
m
l (cosθ)eimφ

Since the L̂2operator does not have an explicit r dependence, the common eigenfunctions of L̂2and
Ĥ have the form - ψ(r, θ, φ) = R(r)A(θ, φ).Substituting it into the eigenvalue equation of the
hamiltonian, we get the radial part, and hence the final solution turns out to be,

ψ(r, θ, φ) =

√
(

2

na0
)3

(n− l − 1)!

2n(n+ l)!
e−r/2rlL2l+1

n−l−1(r)Y (θ, φ)

Thus we obtain the eigenfunctions of the hamiltonian.

The Many Electron problem

The wave function for system of several particles is given by :

ψ = ψ(x1, x2, x3...., xn)

where xirepresents the generalised coordinate(i.e, position and spin ) for the i th particle, the
total number of particles being n. If the system is made up of n identical fermions, the wave function
must follow the following property,

Pijψ(x1, x2, ...., xi, ...., xj , ..., xn) = ψ(x1, x2, ..., xj , ...., xi, ..., xn) = −ψ(x1, x2, ..., xi, ..., xj , ..., xn)

which follows from Pauli’s Spin Statistics Theorem.
we state the general statement of our problem:there are m nuclei and n electrons. We fix the

position of the nuclei initially and then only the electronic part of the Hamiltonian is what matters.

Ĥ = −h̄2/2m
n∑
i=1

∇2
i −

∑
a,i

Zae
2

|Ra − ri|
+
e2

2

∑
i 6=j

1

|ri − rj |

where index i relates to electrons and index ’a’ relates to nuclei.We have omitted:
1)Nuclear kinetic energy,nuclear-nuclear repulsion (Born Oppenheimer approximation)
2)Magnetic interactions(relativistic corrections)
In a more compact notation , we may write ,

Ĥ = Ĥ(x1, x2, x3..., xn) =

n∑
i=1

H(i) +
1

2

∑
i 6=j

V (i, j)

where, H(i) :first two terms on the RHS of the original equation and V(i,j): last term on RHS of
the original equation.We note,V(i,j)=V(j,i).
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Let’s consider a many body problem that has been solved exactly.

Rubber Band Helium:

Two particles of mass m each, are attached to a heavy nucleus by springs each of which has a force
constant of mω2and they also interact among themselves by a similar Hooke’s law spring , its spring
constant being λm2 ω

2.The Hamiltonian of such a system is of the form

Ĥ = − h̄2

2m
(∇2

1 +∇2
2) +

1

2
mω2(r21 + r22) +

λ

4
mω2|r1 − r2|2

We go to a new coordinate system given by

u =
1√
2

(r1 + r2);v =
1√
2

(r1 − r2)

We look at the new form of Hamiltonian that we get under this variable change . Now , we have,

ψ(r1, r2) = φ(u,v)

i.e,
ψ(x1, y1, z1, x2, y2, z2) = φ(ux, uy, uz, vx, vy, vz)

where,c

up =
1√
2

(p1 + p2); vp =
1√
2

(p1 − p2)

We clearly observe,
∂φ

∂x1
=

∂φ

∂ux

∂ux
∂x1

+
∂φ

∂vx

∂vx
∂x1

=
1√
2

(
∂φ

∂ux
+
∂φ

∂vx
)

and,
∂φ

∂x2
=

∂φ

∂ux

∂ux
∂x2

+
∂φ

∂vx

∂vx
∂x2

=
1√
2

(
∂φ

∂ux
− ∂φ

∂vx
)

carrying out the same process for a second time, we get ,

∂2φ

∂x21
=

1

2
(
∂2φ

∂u2x
+ 2

∂2φ

∂ux∂vx
+
∂2φ

∂v2x
)

and,
∂2φ

∂x22
=

1

2
(
∂2φ

∂u2x
− 2

∂2φ

∂ux∂vx
+
∂2φ

∂v2x
)

Thus,
∂2φ

∂x21
+
∂2φ

∂x22
=
∂2φ

∂u2x
+
∂2φ

∂v2x

Similarly, computing the other terms, we get ,

∇2
1φ+∇2

2φ = ∇2
uφ+∇2

vφ

Also, it can be easily exhibited that
r21 + r22 = u2 + v2
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Thus, under the given transformation, the hamiltonion is of the form,

Ĥ = [
−h̄2

2m
∇2
u +

1

2
mω2u2] + [

−h̄2

2m
∇2
v +

1

2
(1 + λ)mω2v2] = Ĥu + Ĥv

where Ĥu and Ĥvare nothing but three dimensional harmonic oscillator Hamiltonia in u and v
respectively. Clearly the eigenfunctions would be the product of the eigenfunctions of the individual
Hamiltonia and eigenvalue, the sum of individual eigenvalues. Thus, the ground state energy is the
sum of ground state energies of the two Hamiltonia.

Eg =
3h̄ω

2
(1 +

√
1 + λ)
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The Thomas-Fermi model of the atom

In atoms consisting of a large number of electrons, the motion of the electrons can be approximated
as that of a free electron gas in a central potential.
From Quantum Mechanics, we know that the Fermi radius of a free electron gas is given by kF =
(3π2n(r))

1
3 , where n(r) is the number density of electrons as a function of radial separation from

the origin.
As the Fermi radius is interpreted as a boundary separating occupied and unoccupied states in
k-space, the maximum kinetic energy a single electron in the gas is

(K.E)max =
h̄2k2F
2µ

=
h̄2

2µ
(3π2n(r))

2
3 (1)

where µ is the reduced mass of the electron-nucleus pair.
We now present some arguments to develop the form of the central potential. Total energy of an
electron in the gas

E =
p2

2µ
− qφ(r) (2)

where φ(r) is the central potential, and −q the charge of the electron.
For the electron to be bound, we need E < 0. We choose

qφ(r) = (K.E)max (3)

so as to satisfy the criterion (Note that this is only an approximation).

qφ(r) =
h̄2

2µ
(3π2n(r))

2
3 ⇒ n(r) =

(2µqφ(r))
3
2

3π2h̄3
(4)

Classically, we also require the potential φ(r) to satisfy Poisson’s equation.

∇2φ = −ρ(r)

ε0
(5)

Here ρ(r) = −qn(r), and ∇2φ = 1
r2

d
dr

(
r2 dφdr

)
as φ is purely radial in nature.

⇒ 1

r2
d

dr

(
r2
dφ

dr

)
=
q(2µq)

3
2

3π2h̄3ε0
φ

3
2 (6)

In invoking the degenerate free electron gas system in Quantum mechanics, the model neglects
inter-electronic repulsion. However we can deal with the electronic contribution to the classical
potential φ(r) in an average way.
We thus suggest a change of variables in equation (6), along with boundary conditions, to obtain
forms of φ we physically expect.
Observe that as r → 0, the potential will essentially be due to the nucleus, behaving as Zq

4πε0r
. This

suggests that we introduce a change of variables as

φ(r) =
Zq

4πε0r
χ(r) (7)

with the boundary condition χ(0) = 1.
Equation (6) becomes

d2χ

dr2
=

4Z
1
2

3πh̄3

(
2µq2

4πε0

) 3
2 1

r
1
2

χ
3
2 (8)
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To simplify this equation, we introduce the change of variables r = γx, where x is dimensionless,
defining the constant γ later.
Under this change, equation (8) becomes

d2χ(x)

dx2
=

[
γ

3
2

4Z
1
2

3πh̄3

(
2µq2

4πε0

) 3
2

]
χ(x)

3
2

x
1
2

(9)

We now choose γ such that the quantity inside brackets is 1. Thus

γ =
1

2

(
3π

4

) 2
3 1

Z
1
3

4πε0h̄
2

µq2
' 0.8853a0

Z
1
3

(10)

where

a0 =
4πε0h̄

2

µq2
' 0.53 Ao

is the Bohr radius. Equation (9) thus takes the form

d2χ

dx2
=
χ

3
2

x
1
2

(11)

with χ(0) = 1. This is known as the dimensionless Thomas-Fermi equation, abbreviated the TF
equation. As the TF equation is of second order, we need another boundary condition to solve
it uniquely. For numerical analysis, it is convenient to use χ′(0) as the other boundary condition,
varying it as a parameter to obtain a class of solutions. Observe that for an isolated atom, χ(∞) = 0
as we know that φ(∞) = 0.
Once we know χ(r), from equation (4),

n(r) =
(2µqφ(r))

3
2

3π2h̄3
=

1

3π2h̄3

(
2µZq2

4πε0r
χ(r)

) 3
2

=
1

3π2

(
2Z

a0

χ(r)

r

) 3
2

(12)

Notice that since χ(0) = 1, n(r) blows up at r = 0. This is a basic error in the TF model, that it
predicts an infinite electron density at the nucleus. It has been shown that the TF model for the
atom is accurate only in the domain

a0
Z
< r < a0

For r < a0
Z , the quasi classical approximation underlying the TF model breaks down. For r > a0,

the de-Broglie wavelength of the electron becomes large, and the assumption that φ(r) doesn’t
vary significantly over a wavelength becomes weak. The Thomas Fermi model thus deals with the
atom, with approximations, in a quasi classical way, invoking both the free electron gas system from
Quantum Mechanics, and Poisson’s equation from Classical Electrodynamics.

We attempted to solve equation (11) numerically for certain values of χ′(0), using Euler’s method
to implement an algorithm in Python, obtaining sets of datapoints, and plotted it using GNUplot.
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The lowermost curve(light blue) corresponds to χ′(0) = −1.6, the middle curve(green) to
χ′(0) = −1.5 and the topmost curve(violet) to χ′(0) = −1.4. This suggests that the isolated
atom case(χ(∞) = 0) occurs for χ′(0) lying somewhere between 1.5 and 1.6.
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The Variational Principle

Suppose we have a system in an arbitrary quantum state

|ψ
〉

=
∑
i

ci|φi
〉

i = 1, 2, 3 . . .

where |φi
〉

are the energy eigenstates, satisfying H|φi
〉

= λi|φi
〉
, and

〈
φi|φj

〉
= δij following from

the hermiticity of the hamiltonian operator.
Subject to normalization,

〈
ψ|ψ

〉
=
∑

i |ci|2 = 1.
Ground state energy Egs = λ1 < λ2 < λ3 . . .
The expectation value of energy for the state |ψ

〉
is determined as-〈

ψ|H|ψ
〉

=
∑
i

λi|ci|2

Since λ1 < λ2 < λ3 . . . ∑
i

λi|ci|2 ≥
∑
i

λ1|ci|2 = λ1 = Egs

Thus, 〈
ψ|H|ψ

〉
≥ Egs

for any normalized |ψ
〉

we guess as the ground state wavefunction.
This is a fundamental result for systems that are not exactly solvable, as it essentially tells us that
if we minimize

〈
ψ|H|ψ

〉
with respect to parameters we define within our guess function |ψ

〉
, we will

come closer to the exact experimentally observed ground state energy, and hence the form of the
ground state wavefunction. We will now illustrate this technique applying it on the He atom, one
of the simplest many body system- consisting of 2 electrons and a nucleus of charge +2e.

Variational principle on the Helium Atom

The exact hamiltonian for the helium atom is-

H = − h̄2

2m
(∇2

1 +∇2
2)−

e2

4πε0

(
2

r1
+

2

r2

)
+

e2

4πε0|r1 − r2|

Here, r1 and r2 are the position vectors of electrons labelled 1 and 2, with the nucleus chosen as
origin. The nucleus being much more massive than an electron, can be assumed to be fixed(Born-
Oppenheimer approximation)
The hamiltonian can be re-written as-

H = − h̄2

2m
(∇2

1 +∇2
2)−

e2

4πε0

(
Z

r1
+
Z

r2

)
+

e2

4πε0

(
Z − 2

r1
+
Z − 2

r2
+

1

|r1 − r2|

)
The first two terms now represent a separated hamiltonian for 2 Hydrogen like atoms(with nuclear
charge Z) defined independently in the coordinate systems of r1 and r2 respectively. We may thus
take a guess for the ground state wavefunction ψ as a product of the ground state wavefunctions(in
this case- 1s orbitals) of two H like atoms. That is, trial ground state wavefunction-

ψ(r1, r2) =
Z3

πa30
e
−Z(r1+r2)

a0
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where a0 is the Bohr radius(0.529Ao). Observe that Z here is a parameter with respect to which we
would like to minimize expected energy.
Expected ground state energy -

〈
ψ|H|ψ

〉
= 2× Z2E1 + 2× (Z − 2)e2

4πε0

〈
1

r

〉
+
〈
Vee
〉

Here Vee = e2

4πε0|r1−r2| , and E1 = − e2

8πε0a0
= −13.6 eV which is the ground state energy of the H

atom.(
Recall: For a H like atom, EZn = Z2E1

n2

)
It can be shown that 〈

1

r

〉
=
Z

a0

and 〈
Vee
〉

= −5Z

4
E1

Thus 〈
H
〉

=

(
2Z2 − 4Z(Z − 2)− 5Z

4

)
E1 =

(
− 2Z2 +

27Z

4

)
E1

d
〈
H
〉

dZ
= 0⇒ Z =

27

16
= 1.6875

For this value of Z, 〈
H
〉

= −77.45625 eV

The experimentally observed ground state energy of Helium is -79 eV. We are within 2% of the
correct answer. This suggests that our trial ground state wavefunction for Z=1.6875 is a fairly
accurate guess for the exact ground state wavefunction of the He atom. More complicated forms
of the trial function have been shown to give more accurate results. However heuristically, we have
seen that a product of single electron wavefunctions can perform reasonably well upon optimization.
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The Hartree Approximation

Consider the exact hamiltonian of a many electron many nuclei system-

H = − h̄2

2m

∑
i

∇2
i −

∑
i,k

Zke
2

4πε0|xk − xi|
+

1

2

∑
i,j(i 6=j)

e2

4πε0|xi − xj|

Electrons are indexed by i & j and nuclei by k. Nuclear kinetic energy and inter-nuclear repulsion
are ignored(Born-Oppenheimer approximation). The first two terms of this hamiltonian can be
combined, and we’ll have a hamiltonian of the form-

H =
∑
i

h(i) +
1

2

∑
i,j(i 6=j)

V (i, j) (1)

h(i) is the combination of electron kinetic energy and electron-nuclear
potentials for the electron indexed by i, and V (i, j) is electron-electron repulsion potential between
electrons i and j. [Note: V (i, j) = V (j, i), hence the half factor]. Hartree attempted to separate
this hamiltonian into N single electron hamiltonians. Let

ψ(x1, x2 . . . xN ) = u1(x1)u2(x2) . . . uN (xN ) (2)

which is a simple product of N single electron wavefunctions. Each ui is defined by its coordinate
xi, and is normalized. However the set {ui} is not necessarily orthogonal.〈

ψ|H|ψ
〉

=
∑
i

〈
ui|h(i)|ui

〉
+

1

2

∑
i,j(i 6=j)

〈
uiuj |V (i, j)|uiuj

〉
(3)

We want to minimize
〈
ψ|H|ψ

〉
under the constraint of normalization of each ui. Applying the

technique of Lagrange multipliers from the Calculus of variations,

δ
(〈
ψ|H|ψ

〉
−
∑
i

λi(
〈
ui|ui

〉
− 1)

)
= 0 (4)

where each λi is a lagrange multiplier. We obtainN equations from this variation. For k = 1, 2 . . . N -

2

(〈
δkuk|h(k)|uk

〉
+

1

2

∑
j( 6=k)

〈
δkukuj |V (k, j)|ukuj

〉
− λk

〈
δkuk|uk

〉)
= 0 (5)

Here we choose the derivative operator as δk = i d
dxk

so as to keep it Hermitian, and the factor of 2

stems from this.(Had we chosen δk = d
dxk

, which is anti-hermitian, the variation would be identically
0). So while applying chain rule on equation (4), observe that〈

δkuk|h(k)uk
〉

=
〈
uk|δk(h(k)uk)

〉
〈
δkukuj |V (k, j)ukuj

〉
=
〈
ukuj |δk(V (k, j)ukuj)

〉
and 〈

δkuk|uk
〉

=
〈
uk|δkuk

〉
Writing equation (5) in its integral form,∫

δku
∗
kh(k)ukdxk +

1

2

∫
δku
∗
k

( ∑
j(6=k)

∫
u∗jV (k, j)ujdxj

)
ukdxk − λk

∫
δku
∗
kukdxk = 0

10



⇒
∫
δku
∗
k

(
h(k) +

1

2

∑
j(6=k)

〈
uj |V (k, j)|uj

〉
− λk

)
ukdxk = 0

As δku
∗
k 6= 0 in general, (

h(k) +
1

2

∑
j(6=k)

〈
uj |V (k, j)|uj

〉
− λk

)
uk = 0

Hence (
h(k) +

1

2

∑
j(6=k)

〈
uj |V (k, j)|uj

〉)
uk = λkuk (6)

Equation (6) thus gives us N single electron Schrödinger equations.

h′kuk = λkuk (7)

h′k = h(k) +
1

2

∑
j( 6=k)

〈
uj |V (k, j)|uj

〉
(8)

For a fixed k, multiplying both sides of equation (7) by all ui (i 6= k),(
h(k) +

1

2

∑
j(6=k)

〈
uj |V (k, j)|uj

〉)∏
i

ui = λk
∏
i

ui

Summing over k, (∑
k

h(k) +
1

2

∑
j,k(j 6=k)

〈
uj |V (k, j)|uj

〉)∏
i

ui =

(∑
k

λk

)∏
i

ui (9)

We thus have an effective N electron Hartree hamiltonian

H ′ =
∑
k

h(k) +
1

2

∑
j,k(j 6=k)

〈
uj |V (k, j)|uj

〉
(10)

satisfying

H ′
∏
i

ui =

(∑
k

λk

)∏
i

ui (11)

As seen from the form of H ′, equation (11) has to be solved self-consistently. We initially supply
a normalized function set ui to construct H ′, find its separable eigenfunctions to reconstruct H ′

and repeat the process until self-consistency is achieved; that is, the eigenvalues for a certain set of
product functions {ψi = ui1(x1)ui2(x2) . . . uiN (xN )} doesn’t change significantly over iteration.
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SLATER’S DETERMINANT

According to Pauli Exclusion Principle the wave function representing a system of 2 electrons
(fermions), is antisymmetric w.r.t. transposition (permutation) operator. P̂ψ = −ψ
From Hartree product we have ψHP for a ’n’ electron system in the form:

ψHP = ψ1ψ2...ψn (1)

Let ψa and ψb be two normalised wave functionassociated with either of two electrons. To satisfy
Pauli Spin Statistics theorem ψHP needs to be of the form:

ψHP = ψa(x1)ψb(x2) − ψb(x1)ψa(x2) (2)

where x denotes both −→r which is spatial variable, and also α which is spin variable.
This can be represented also in a determinant form called Slater Determinant as

ψSD =
1√
2

∣∣∣∣ψa(x1) ψb(x1)
ψa(x2) ψb(x2)

∣∣∣∣ (3)

We can generalize this for system of N electrons.

ψSD =
1√
N !

∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . ψn(x1)
ψ1(x2) ψ2(x2) . . . ψn(x2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ψ1(xn) ψ2(xn) . . . ψn(xn)

∣∣∣∣∣∣∣∣

HARTREE FOCK APPROXIMATION

Assumptions

• All ψis are orthonormal

• All of them are normalized.

• In short

∫
ψ∗i (xi)ψj(xj) dxidxj = δij (4)
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Consider N electron system. Hamiltonian of the system can be written as

Ĥ =
∑

iHi +
1

2

∑
i 6=j V (i, j)

where Hi =
−h̄2

2m
∇2
i and V(i,j)=V(j,i)

Consider 2 electron system again, then we can use method of Lagrange’s multiplier with the
constraint of normalisation on ψSD.Variation of expectation value of hamiltonian is zero constrained
to normalization.
δ[< ψSD|H|ψSD > −Σijλij < ψi|ψj >] = 0

< ψSD|H|ψSD > = Σi < ψSD|Hi|ψSD > +
1

2
Σi 6=j < ψ|V (i, j)|ψ > (5)

So for a two electron case the equation is:

< ψSD|H|ψSD > = < ψSD|H1 +H2|ψSD > +
1

2
< ψ|V (1, 2) + V (2, 1)|ψ > (6)

Now consider the First term:

< ψSD|H1 +H2|ψSD > =
1

2

∫ ∫
[ψ∗1(x1)ψ∗2(x2) − ψ∗2(x1)ψ∗1(x2)] (H1 + H2)

[ψ1(x1)ψ2(x2) − ψ2(x1)ψ1(x2)] dx1dx2

(7)

Note that H1 operates only on wavefunction of the form ψi(x1) and H2 only on ψi(x2) . As a
result we have four integrals as follows:

(Also note that the
1√
(2)

factor of each wave function is squared due to product of 2 ψs and taken

out common as
1

2
)

< ψSD|H1 +H2|ψSD >=
1

2

∫ ∫
[ψ∗1(x1)ψ∗2(x2) − ψ∗2(x1)ψ∗1(x2)] H1(ψ1(x1))ψ2(x2) dx1dx2 −

1

2

∫ ∫
[ψ∗1(x1)ψ∗2(x2) − ψ∗2(x1)ψ∗1(x2)] H1(ψ2(x1))ψ1(x2) dx1dx2 +

1

2

∫ ∫
[ψ∗1(x1)ψ∗2(x2) − ψ∗2(x1)ψ∗1(x2)] H2(ψ2(x2))ψ1(x1) dx1dx2 −

1

2

∫ ∫
[ψ∗1(x1)ψ∗2(x2) − ψ∗2(x1)ψ∗1(x2)] H2(ψ1(x2))ψ2(x1) dx1dx2

(8)

In equation 7 we apply result from equation 4; finally we get:
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< ψSD|H1 +H2|ψSD >=
1

2

∫
ψ∗1(x1) H1(ψ1(x1)) dx1 +

1

2

∫
ψ∗2(x1) H1(ψ2(x1)) dx1 +

1

2

∫
ψ∗2(x2) H2(ψ2(x2)) dx2 +

1

2

∫
ψ∗1(x2) H2(ψ1(x2))dx2

(9)

Now since under integration the two variables x1 and x2 are interchangeable, we have:

< ψSD|H1 +H2|ψSD >=
∫
ψ∗1(x1) H1(ψ1(x1)) dx1 +∫
ψ∗2(x2) H2(ψ2(x2)) dx2 +

(10)

< ψSD|H1 +H2|ψSD >= < ψ1(x1)|H1|ψ1(x1) > +
< ψ2(x2)|H2|ψ2(x2) > +

(11)

We can now generalise this result to N electron system:

Σi < ψSD|Hi|ψSD >= Σi < ψi(xi)|Hi|ψi(xi) > =
Σi

∫
ψ∗i (xi) Hi(ψi(xi)) dxi

(12)

Now lets consider the potential (second) term in eq.6 :

1

2
< ψ|V (1, 2) + V (2, 1)|ψ >=

1

2
{1

2

∫ ∫
[ψ∗1(x1)ψ∗2(x2) − ψ∗2(x1)ψ∗1(x2)] (V(1,2) + V(2,1))

[ψ1(x1)ψ2(x2) − ψ2(x1)ψ1(x2)] dx1dx2}
(13)

But we know that V is dependent on |r2 − r1| , so V(1,2) = V(2,1). Hence eq.13 now becomes:

1

2
< ψ|V (1, 2) + V (2, 1)|ψ >=

1

2
{
∫ ∫

[ψ∗1(x1)ψ∗2(x2) − ψ∗2(x1)ψ∗1(x2)] (V(1,2))

[ψ1(x1)ψ2(x2) − ψ2(x1)ψ1(x2)] dx1dx2}
(14)
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1

2
< ψ|V (1, 2) + V (2, 1)|ψ >=

1

2
{
∫ ∫

[ψ∗1(x1)ψ∗2(x2)] V(1,2) [ψ1(x1)ψ2(x2)] dx1dx2 +∫ ∫
[ψ∗2(x1)ψ∗1(x2)] V(1,2) [ψ2(x1)ψ1(x2)] dx1dx2 −∫ ∫
[ψ∗1(x1)ψ∗2(x2)] V(1,2) [ψ2(x1)ψ1(x2)] dx1dx2 −∫ ∫
[ψ∗2(x1)ψ∗1(x2)] V(1,2) [ψ1(x1)ψ2(x2)] dx1dx2 }

(15)

Therefore,

1

2
< ψ|V (1, 2) + V (2, 1)|ψ >=

1

2
{
∫ ∫

[ψ∗1(x1)ψ∗2(x2)] V(1,2) [ψ1(x1)ψ2(x2)] dx1dx2−∫ ∫
[ψ∗2(x2)ψ∗1(x1)] V(1,2) [ψ2(x1)ψ1(x2)] dx1dx2 }

(16)
This result can be generalised as

1

2
Σi 6=j < ψ|V (i, j)|ψ >=

1

2
Σi 6=j

2

N !
{
∫ ∫

[ψ∗i (xi)ψ
∗
j (xj)] V(i, j) [ψi(xi)ψj(xj)] dxidxj −∫ ∫

[ψ∗i (xi)ψ
∗
j (xj)] V(i, j) [ψj(xi)ψi(xj)] dxidxj}

(17)
Therefore,

1

2
Σi 6=j < ψ|V (i, j)|ψ >=

1

N !
Σi 6=j {

∫ ∫
[ψ∗i (xi)ψ

∗
j (xj)] V(i, j) [ψi(xi)ψj(xj)] dxidxj −∫ ∫

[ψ∗i (xi)ψ
∗
j (xj)] V(i, j) [ψj(xi)ψi(xj)] dxidxj}

(18)

So now we plug in the integrals from equations 12 and 18 back into equation 5 and then apply
the variational principle as stated before:

< ψSD|H|ψSD > = Σi

∫
ψ∗i (xi) Hi(ψi(xi)) dxi +

1

N !
Σi 6=j {

∫ ∫
[ψ∗i (xi)ψ

∗
j (xj)] V(i, j) [ψi(xi)ψj(xj)] dxidxj −∫ ∫

[ψ∗i (xi)ψ
∗
j (xj)] V(i, j) [ψj(xi)ψi(xj)] dxidxj}

(19)

Also,
δ[< ψSD|H|ψSD > −Σijλij < ψi|ψj >] = 0
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δkΣi

∫
ψ∗i (xi) Hi(ψi(xi)) dxi + δk

[ 1

N!
Σi6=j[ ∫ ∫

[ψ∗i (xi)ψ
∗
j (xj)] V(i, j) [ψi(xi)ψj(xj)] dxidxj∫ ∫

[ψ∗i (xi)ψ
∗
j (xj)] V(i, j) [ψj(xi)ψi(xj)] dxidxj

]]
−

δkΣijλij < ψi|ψj > = 0

(20)

1. Note the meaning of the Σi 6=j sign: it says sum over i and sum over j but i 6= j. Whereas
Σi(6=j) would mean only sum over i and i 6= j and also don’t sum over j.
2. Note that δk < ψi|H|ψi > = < ψi|H|δkψi > + < δ∗kψi|H|ψi > = 2 < ψi|H|δkψi >
because H is hermitian operator.

∫
δkψ

∗
k(xk)Hk(ψk(xk)) dxk +

[ 1

N!
Σk(6=j)

2
[ ∫ ∫

δkψ
∗
k(xk)ψ∗j (xj) V(k, j) ψk(xk)ψj(xj) dxidxj∫ ∫

δkψ
∗
k(xk)ψ∗j (xj) V(k, j) ψj(xk)ψk(xj) dxidxj

]]
− δkΣjλkj < ψk|ψj > = 0

(21)

Now we demand that λkj = 0 iff k 6= j. Also that λkj = εj iff k = j (Since the λs are arbitrary)
Hence eq 21 becomes :

2
∫
δkψ

∗
k(xk)Hk(ψk(xk)) dxk +

[ 1

N!
Σj(6=k)

2
[ ∫ ∫

δkψ
∗
k(xk)ψ∗j (xj) V(k, j) ψk(xk)ψj(xj) dxkdxj

−
∫ ∫

δkψ
∗
k(xk)ψ∗j (xj) V(k, j) ψj(xk)ψk(xj) dxidxj

]]
= δkεj < ψk|ψj >
= 2 εj

∫
δkψ

∗
kψj dxk

Since we can take δkψ
∗
k where δk is arbitrary hence the rest of the integrand must be zero:

Hk(ψk(xk)) +
1

N !
Σj(6=k)

∫
ψ∗j (xj) V(k, j) ψk(xk)ψj(xj) dxj −

1

N !
Σj(6=k)

∫
ψ∗j (xj) V(k, j) ψj(xk)ψk(xj)dxj

= εjψk(xk)

(22)

The first term is called the DIRECT integral and the second one is called EXCHANGE integral.
Note how the xiandxj are exchanged in the ψs of the second term.
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EXCHANGE INTEGRAL AND ITS INTERPRETATION

PROPERTIES OF THE EXCHANGE OPERATOR

DEFINITION We define the EXCHANGE operator only when it operates on a function ψ, as:

Hexψk(xk) = −Σj

∫
ψ∗j (xj) V(k, j) ψj(xk)ψk(xj)dxj

(23)

HERMITICITY It can be shown that, < l|Hex|m >∗ = < m|Hex|l >
PROOF:[
− Σj

∫
ul(xj)

∫
ψ∗j (xj) V(k, j) ψj(xk)ψk(xj)dxj dxk

]∗
= −Σj

∫
ul(xj)

∫
ψ∗j (xj) V(k, j) ψj(xk)um(xj)dxjdx

Consequence: In equation 22 now we can see that all operators are hermitian , as a result εj on r.h.s. of the
eqn should be real.

Comparing Hartree and Hartree Fock Approximations

THE FERMI HOLE

The wave function ψ has both spatial and spin functions : ψ = u(r)α(w)
So once again we not the exchange term as given in equation 23

The integral right now denotes integration over both spin and spatial coordinates. We can
rewrite this as
Hexψk(xk) = − Σj(i)

∫
ψ∗j (xj) V(k, j) ψj(xk)ψk(xj)dxj

N ote j(i) represents summation over only those j whose spin is parallel to i. Lets assume coulom-

bic interactions, then V (i, j) =
e2

rij

We write the Exchange Integral asHexψk(xk) = −Σj(i)

∫ e2

rij

[ψk(xk)
ψk(xk)

ψ∗j (xj) ψj(xk)ψk(xj)
]
dxj

So,

Hexψk(xk) = − Σj(i)

∫ e2

rij
ψk(xk)

[ψ∗j (xj) ψj(xk)ψk(xj)

ψk(xk)

]
dxj

Hence we define ρ(j, k) such that

ρ(j, k) = eΣj(i)

[ψ∗j (xj) ψj(xk)ψk(xj)

ψk(xk)

]
and

Hexψk(xk) =
∫ −e
rij

ψk(xk)ρ(j,k) dxj

17



]
This form of the exchange integral may be interpreted as interaction of the electron at x(k) with

the average potential field created by all the electrons.

Physically the direct term implies the interaction of the electron at x(k) with the average field.
But this also includes ’Self Interaction terms’ .
If you note , the exchange term is nothing but opposite in sign and same in magnitude to sum of
charge density of parallel spin electrons. Hence... The exchange term accounts for (i)removal of
this self interacting term in the direct integral. (ii)It also cancels out interaction of parallel spin in
neighbourhood of x(k).
We interpret this cancellation of parallel spins as some kind of screening effect and say that there
exists an ”Exchange charge hole” or the ”Fermi Hole” around electron with given spin at point
x(k).
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Density Functional Theory:

Consider a system of n electrons under the influence of external potentials vext,which give nonde-
generate ground states ψoand corresponding densities ρo.Then, consider the following sets,

V = {vext|v′ext 6= vext + constant}

set of all external potentials that do not differ by constant ,

G = {ψo|ψ
′
o 6= eiφψo, φ : globalphase}

i.e, set of all nondegenerate groundstates corresponding to each vextεV that do not differ by a global
phase,

D = {ρo|ρo =

∫
ψ∗oψodV,∀ψoεG}

the set of densities corresponding to each element of G.Then,by construction, the maps we have
defined from V to G and from G to D are surjective.The question is whether they are injective,i.e,
if two vexts that do not differ by a constant can have the same ψo (ground state wave function) and
if two ground state wave functions that do not differ by a global phase belonging to G can have the
same density.

Theorem(Hohenberg-Kohn):The map that associates each vextin V to the corresponding ψoεG
is injective, i.e, two unequal vexts in V cannot give the same ψoεG. Again, the map that associates
a groundstate wavefunction in G to its corresponding density in Dis injective, i.e, two unequal
elements of G cannot have the same density.

Taking both maps together, one has a one-to-one correspondence between the external poten-
tial vext in the Hamiltonian, the (non- degenerate) ground state ψ0 resulting from solution of the
Schrodinger equation and the associated ground state density ρ0 ,Taking both maps together, one
has a one-to-one correspondence between the external potential vext in the Hamiltonian, the (non-
degenerate) ground state ψ0 resulting from solution of Schrödinger equation and the associated
ground state density ρ0 ,Thus vext , ψ0 and ρ0 determine each other uniquely. In mathematical
terms: the ground state is a unique functional of the ground state density, denoted as Ψ[ρ] . Upon
insertion of one element ρ0εD , this functional yields the ground state ψ0 associated with this par-
ticular ρ0 , ψ0 = Ψ[ρ0]. Note that no explicit information on vext is required to construct ψ0 from
ρ0. Ψ has the same functional form for all kinds of many- particle systems with the same interaction
. The same functionalΨ applies to atoms, molecules and solids. The particular geometry of the
systems under consideration is mediated by the structure of the density. Ψ[ρ] is therefore called
universal.

The existence of the functional Ψ[ρ] leads to the statement that any ground state observable is a
density functional, O[ρ] =< Ψ[ρ]|Ô|Ψ[ρ] > . This is true, in particular, for the ground state energy,
which turns out to be the most important density functional, E[ρ] =< Ψ[ρ]|Ĥself + v̂ext|Ψ[ρ] >=
Hself [ρ] + vext[ρ] , where,Hself [ρ] is the universal part of the total energy functional. There exists a
minimum principle for E[ρ0]. If ρ0 is the ground state density corresponding to vext , one has for all
densities ρ′0(r) 6= ρ0(r),E[ρ′0] > E[ρ0] . This is a direct consequence of the unique relation between
ρ0 and ψ0 and the Ritz variational principle.
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