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ABSTRACT

KEYWORDS: 3D FEM, Mie scattering

We have formulated a vector-based 3D Finite Element Method (FEM) to approx-

imate electromagnetic scattering in the Mie limit, where the wavelength of an

incident plane wave is comparable to the size of a scattering dielectric object. The

output of our electromagnetic FEM is a vector of electric field coefficients corre-

sponding to edges of a tetrahedral meshing of the computational domain. In the

context of RADAR remote sensing, the far-field is an important quantity, and we

have formulated the far-field using Huygen’s principle applied to the FEM field

coefficients on the surface of the scatterer. To test the validity of the entire model

computationally, we tackle the problem of Mie scattering from a homogeneous di-

electric sphere, which has an analytical solution for the scattered field commonly

known as the Mie Series. We have developed a custom FEM software in C++ for

this purpose, however, are still in the process of perfecting the forward model to

find good agreement between FEM and Mie theory.
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NOTATION

~r Position vector (as a column vector unless stated otherwise)

S Surface of scatterer

Γ Surface of Computational Domain

Ω Volumetric region of Computational Domain

εr Relative permittivity (dielectric constant)

~E Electric Field

~Einc Incident Electric Field

~Escat Scattered Electric Field

~H Magnetic Field strength

λ Wavelength of incident field

k0 Free space wavevector of incident field

Lk(x, y, z) Local scalar basis function of node with index k ∈ {1, 2, 3, 4}
~T (x, y, z) Local or global vector basis function (interchangeably)

Ve Volume of a single tetrahedral element indexed e

∆ Area of a triangle or triangular region (context specific)

lk Length of an edge indexed k

iv



CHAPTER 1

Introduction

A Finite Element Method (FEM) is an approach to find an approximate solution

to a given Partial Differential Equation (PDE) in a spatial domain. It achieves this

by tessellating the space into elements, which have characteristic basis functions

with special properties associated with them. A linear combination of these local

basis functions constitutes an approximate solution. The optimal coefficients of

this linear combination are obtained by the imposition of boundary conditions and

forcing functions in an application-specific formalism. Finite Element Methods are

widely used in applications of Fluid Dynamics and Electromagnetics (EM).

In the context of Electromagnetics, FEMs are extensively used to study scat-

tering from rough inhomogeneous dielectric surfaces as part of RADAR remote

sensing missions. The inputs to an electromagnetic FEM are knowledge of the

incident field and of the permittivity profile of the scatterer. Given these inputs,

FEM gives us knowledge of the scattered (or total) field. For this reason, electro-

magnetic FEMs are often referred to as just ”forward models”. However, sensing

problems in EM often involve predicting the permittivity profile of a scatterer

given knowledge of the incident and scattered fields. These problems are referred

to as ”inverse problems”, the output of which is aptly called a ”reconstruction”.

Inverse problems are tackled in a data-driven approach using multiple iterations of

a forward model. Hence, highly accurate FEMs describing the scattering behavior

of a class of relevant objects are of utmost importance.

Physically, the phenomenon of a microwave scattering off a non-magnetic

dielectric object is well described by classical EM in the Mie scattering limit

(λ ∼ object size). In this thesis, we develop a general 3D FEM formalism to

describe Mie scattering from inhomogeneous dielectrics. The problem of scatter-

ing from a homogeneous dielectric sphere is chosen to test the correctness of the

forward model, since it permits an analytical solution.



CHAPTER 2

3D FEM

2.1 Problem Setting

Consider figure (2.1). We have a plane wave ~Einc incident on a non-magnetic

(µr = 1) and in general inhomogeneous dielectric object. A homogeneous dielectric

sphere is chosen only to test the theory. The object is enclosed in a computational

domain, represented by the dashed lines. It is a cubical domain for the test

problem. It is assumed that the wavelength of the incident field is comparable

to the size of the object of interest. The wavelength is equal to the diameter of

the sphere for the test problem. The surface of the scatterer is denoted S, the

surface of the computational domain is denoted Γ, while its volume is denoted

Ω. Given this information, we wish to approximate the scattered (or total) field

at a far off point ~r ′. (We occasionally drop the vector symbol only to keep the

analysis clean). By ”far”, we mean |~r ′| is much larger than the size of the object,

an approximation that will become relevant in the far-field derivation. Also, the

entire space is free of charges or current sources.

2.2 Weighted Residual formalism

Under the conditions stated in the previous section, the electric and magnetic

fields assume a time-harmonic form with time dependence ejωt. Decoupling the

time dependence, the Maxwell’s equations for the spatial part of the fields are

given by

∇× ~E = −jωµ0
~H

∇× ~H = jωε0εr ~E
(2.1)



Figure 2.1: This is the physical setting of the problem we wish to test FEM
against. It has a known analytical solution called Mie Series

The corresponding Helmholtz equation is given by

~RE = ∇× (∇× ~E)− k2
0εr ~E = 0 (2.2)

The variable ~RE is called the residual and must be equal to zero for the exact

solution. However, for an approximate solution ~E obtained from FEM, a ”weighted

residual” is allowed to be zero in the following manner

∫
Ω

~T · ~RE dV =

∫
Ω

~T ·
(
∇× (∇× ~E)− k2

0εr
~E
)
dV = 0 (2.3)

Here, ~T is a local testing function, and is also the local basis function that will

be used in expressing the electric field as a linear combination. This approach of

using identical testing and basis functions is called Galerkin’s method. Simplifying

Equation (2.3) using vector calculus identities, we get

∫
Ω

[
(∇× ~T ) · (∇× ~E)− k2

0εr
~T · ~E

]
dV = −

∮
Γ

~T ·
(
n̂× (∇× ~E)

)
dS (2.4)

Here, n̂ is the unit normal vector on the surface Γ. Note that the RHS is now

a surface integral over Γ, the boundary of the computational domain. Hence, to

3



make any further reduction of the RHS, we first have to apply an appropriate

boundary condition on the electric field. In the present case, we use a first order

Absorbing Boundary Condition (ABC) as follows

∇× ~Escat = −jk0

√
εr(n̂× ~Escat) on Γ (2.5)

where ~Escat = ~E − ~Einc is the scattered field. Physically, this is equivalent to

approximating the direction of propogation of the scattered field to be along the

unit normal at the boundary. Further simplification of equation (2.4) using (2.5)

yields∫
Ω

[
(∇× ~T ) · (∇× ~E)− k2

0εr ~T · ~E
]
dV − jk0

∮
Γ

√
εr ~T · (n̂× (n̂× ~E)) dS

=

∮
Γ

[
−jk0

√
εr ~T ·

(
n̂× (n̂× ~Einc)

)
− ~T ·

(
n̂× (∇× ~Einc)

)]
dS

(2.6)

Notice that the RHS is now a function only of the incident field, a known quantity,

while the LHS is a function of the total electric field, which we wish to approximate.

Equation (2.6) is called the FEM Weak Form, and is compactly represented as

Φ(~T , ~E) = b(~T , ~Einc) (2.7)

2.3 Galerkin Testing

Suppose there are a total of N edges in Ω after meshing. Corresponding to each

global edge j is a global basis function ~Tj (A global edge basis function is the sum

of local basis functions corresponding to each element the edge is part of). We

expand the total field ~E in Ω in terms of the global basis functions as

~E =
N∑
j=1

uj ~Tj (2.8)

There are N unknown coefficients {uj} to solve for. But we also have N basis

functions. By setting the testing function ~T to each of these N basis functions,

one can obtain N linear equations to solve for the coefficients. The act of using

the same testing functions as the basis functions is referred to as Galerkin testing.
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For i = 1 . . . N , we have N linear equations of the form

N∑
j=1

ujΦ(~Ti, ~Tj) = b(~Ti, ~Einc) (2.9)

Hence, this can be compactly represented as Au = b, where Aij = Φ(~Ti, ~Tj),

and bi = b(~Ti, ~Einc). Solving this system of equations thus gives us the the field

coefficients {uj}, and hence, knowledge of the electric field everywhere in the

computational domain if the meshing is fine.

2.4 Vector tetrahedral basis functions

Until now, we have spoken about vector basis functions ~T without looking at their

mathematical form. In this section, we define these basis functions and look at

some of their special properties (Jin, 2015).

(a) Vector tetrahedral/Nedelec element:
Each tetrahedron has 6 vector basis
functions corresponding to 6 edges,
locally numbered as shown

(b) The computational domain meshed
tetrahedrally using Gmsh (Geuzaine
and Remacle, 2009). A sphere is defined
inside the domain

Figure 2.2

Each tetrahedral element has 6 local ”edge basis functions”, associated with

each of the 6 edges in a special way, and can be visualized as local vector fields

that are non-zero only on or inside the tetrahedral element. The functional form
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of the basis function corresponding to edge k is given by

~T e
k = lk(Lk1∇Lk2 − Lk2∇Lk1) (2.10)

Here, the superscript e denotes element index e. The length of edge k is denoted lk.

Edge k ∈ {1, 2, 3, 4, 5, 6} is directed from node k1 to node k2 (k1, k2 ∈ {1, 2, 3, 4}).

Further, for each node k ∈ {1, 2, 3, 4}, the scalar basis function Lk is given by

Lk =
Vk
Ve

:=
1

6Ve
(ak + bkx+ cky + dkz) (2.11)

Here, Vk refers to the volume of the sub-tetrahedron created by the point (x, y, z)

and the triangle opposite to node k, and Ve is the volume of the whole tetrahedron.

The vector tetrahedral basis function is a localized linear vector field designed to

have special properties suitable for the problem at hand

• It is divergence free: ∇ · ~T e
1 = 0

• Its curl is a constant vector field: ∇× ~T e
1 = 2l1(∇L1 ×∇L2)

• Its component along the characteristic edge is one: for example, ê1 · ~T e
1 = 1

(where ê1 is the unit vector of edge 1 directed from node 1 to node 2)

2.5 Matrix Assembly

In section (2.3), we had arrived at a system of linear equations by abstracting

integrals into the functions Φ(~Ti, ~Tj) and b(~Ti, ~Einc). Here, we proceed to evaluate

these integrals analytically. Simplifying equation (2.6), note that

Aij = Φ(~Ti, ~Tj)

=

∫
Ω

[
(∇× ~Ti) · (∇× ~Tj)− k2

0εr
~Ti · ~Tj

]
dV + jk0

∮
Γ

[√
εr ~Ti · ~Tj −

√
εr(~Ti · n̂)(~Tj · n̂)

]
dS

≡ [Pij −Qij ] + [Rij − Sij ]

(2.12)

where we denote the volume integrals by Pij and Qij respectively, and the surface

integrals by Rij and Sij respectively. An important point to be noted here is that

i and j are global edge indices running from 1 to N , so Aij is an N ×N matrix.
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However, we evaluate these integrals using local basis functions, with local edge

indices k and m belonging to {1, 2, 3, 4, 5, 6}. So Akm is a 6 × 6 matrix unique

to each element. These local matrices are then ”smeared” onto a global N × N

matrix using a local to global edge mapping obtained using information in the

mesh file of the computational domain.

We explicitly evaluated the integrals in equation (2.12) analytically, and present

the results (including intermediate variables) directly here. (Calculation details

have been documented separately, and can be made available upon request. It has

been excluded in this report to limit equation redundancies)

2.5.1 Matrix P

Pkm =

∫
Ω

(∇× ~Tk) · (∇× ~Tm)dV (2.13)

Since ~Tk, ~Tm are local, the domain of integration reduces to a single element that

share these edges (k and m). We find that

Pkm =
lklm

324V 3
e

[
(ck1dk2 − ck2dk1)(cm1dm2 − cm2dm1)

+(dk1bk2 − dk2bk1)(dm1bm2 − dm2bm1)

+(bk1ck2 − bk2ck1)(bm1cm2 − bm2cm1)
] (2.14)

2.5.2 Matrix Q

Qkm = k2
0

∫
Ω
εr ~Tk · ~TmdV (2.15)

Again, the domain of integration reduces from Ω to a single element having edges

k and m. We find that

Qkm = k2
0

lklmεr
36V 2

e

[
I(k1,m1)θk2m2 + I(k2,m2)θk1m1 − I(k1,m2)θk2m1 − I(k2,m1)θk1m2

]
(2.16)

where

θkm := bkbm + ckcm + dkdm k,m ∈ {1, 2, 3, 4} (2.17)

7



and a two-node integral I(k,m) is given by

I(k,m) := |J |
(
nknm

6
+

1

24

[
nk(fm + gm + hm) + nm(fk + gk + hk)

]
+

1

60

[
fkfm + gkgm + hkhm

]
+

1

120

[
fk(gm + hm) + fm(gk + hk) + (gkhm + gmhk)

])
(2.18)

Within I(k,m), we have a Jacobian determinant |J |

|J | =
∣∣∣(~r2 − ~r1) (~r3 − ~r1) (~r4 − ~r1)

∣∣∣ (2.19)

(where {~r1, ~r2, ~r3, ~r4} are the position vectors of the nodes of the element in which
~Tk and ~Tm are non-zero), and intermediate variables {nk, fk, gk, hk} defined as

nk := Lk(~r1) fk := Lk(~r2)− Lk(~r1) gk := Lk(~r3)− Lk(~r1) hk := Lk(~r4)− Lk(~r1) (2.20)

And Lk is the already defined scalar basis function of node k in the element of

interest.

2.5.3 Matrix R

Rkm = jk0

∮
Γ

√
εr ~Tk · ~Tm dS (2.21)

This time, we have a surface integral, whose domain of integration reduces from

Γ to the exposed triangle (∆) of a surface element that contain edges k and m.

We find that

Rkm = jk0
lklm
√
εr

36V 2
e

[
B(k1,m1)θk2m2+B(k2,m2)θk1m1−B(k1,m2)θk2m1−B(k2,m1)θk1m2

]
(2.22)

where θkm is defined the same way as in the previous section, while the two-node

integral B(k,m) is given by

B(k,m) := ∆

[
pkpm +

1

3

(
pk(qm + rm) + pm(qk + rk)

)
+

1

6
(qkqm + rkrm) +

1

12
(qkrm + qmrk)

]
(2.23)

Here, ∆ is the area of the exposed triangle (with vertices ~r1, ~r2, ~r3) of the surface

element in which edges k,m are defined, and intermediate variables {pk, qk, rk} for

8



k ∈ {1, 2, 3, 4} are defined as

pk := Lk(~r1) qk := Lk(~r2)− Lk(~r1) rk := Lk(~r3)− Lk(~r1) (2.24)

2.5.4 Matrix S

Skm = jk0

∫
Γ

√
εr(~Tk · n̂)(~Tm · n̂) dS (2.25)

Again, the domain of integration reduces from Γ to ∆. We find that

Skm = jk0

lklm
√
εr

1296V 4
e

ζ(k,m) (2.26)

where the two-node integral ζ(k,m) is given by

ζ(k,m) := ∆

[
ukum +

1

3

(
uk(vm + wm) + um(vk + wk)

)
+

1

6
(vkvm + wkwm) +

1

12
(vkwm + vmwk)

]
(2.27)

∆ is the area of the exposed triangle, and intermediate variables {uk, vk, wk} for

k ∈ {1, 2, 3, 4} are defined as

uk := Fk(~r1) vk := Fk(~r2)− Fk(~r1) wk := Fk(~r3)− Fk(~r1) (2.28)

where

Fk(x, y, z) :=

[
(ak1Ψk2−ak2Ψk1)+(bk1Ψk2−bk2Ψk1)x+(ck1Ψk2−ck2Ψk1)y+(dk1Ψk2−dk2Ψk1)z

]
(2.29)

Within this, an intermediate variable Ψk (k ∈ {1, 2, 3, 4}) is defined as

Ψk := bknx + ckny + dknz (2.30)

where nx, ny, nz are the components of the unit normal vector at the exposed

triangle of the surface element in interest.
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2.5.5 Vector b

Recall from equation (2.6) that b(~T , ~Einc) is defined as

b(~T , ~Einc) =

∮
Γ

[
−jk0

√
εr ~T ·

(
n̂× (n̂× ~Einc)

)
− ~T ·

(
n̂× (∇× ~Einc)

)]
dS

(2.31)

And the incident field vector bi = b(~Ti, ~Einc). Here, ~Einc is an incident plane wave

of the form

~Einc = e−j
~k0·~rÊinc (2.32)

Again, note that the domain of surface integration reduces from Γ to the exposed

triangle ∆ of the surface element ~T is part of. To make progress on the equation

(2.31), we used a centroid approximation: if the meshing is sufficiently fine, the

integral is nearly equal to the value of the integrand at the centroid of ∆ times

the area of ∆. Using the centroid approximation along with further reduction of

the integral using the incident field (2.32), we have

b(~T ) ≈ ∆ jk0 e
−j~k0·~rG

[
(~T (~rG)·Êinc)

(√
εr − (k̂0 · n̂)

)
−(n̂·Êinc)

(
~T (~rG) · (

√
εrn̂− k̂0)

)]
(2.33)

Here ~rG = (~r1 + ~r2 + ~r3)/3 is the position vector of the centroid of ∆. Equation

(2.33) was further reduced to aid programming it.

We have thus explicitly constructed theN×N FEM matrix A = (P−Q+R−S)

and the incident field vector b, which allows us to solve Au = b computationally

so as to obtain the electric field coefficients {uj} everywhere in the computational

domain Ω. The spatial electric field everywhere inside Ω, in the FEM approxima-

tion, is then given by ~E(~r) =
∑

j uj
~Tj(~r).

An elegant aspect of FEM is that the matrix A is Sparse Band Matrix, since

edges that couple must belong to the same tetrahedral element due to the local

nature of the basis functions. This sparsity allows for computationally efficient

matrix inversion to determine u = A−1b even for fine meshing.
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CHAPTER 3

Far field using Huygen’s principle

Now that we have the electric field both on and inside the computational domain

encoded in the field coefficients {uj}, we wish to determine the electric field at a far

off point ~r ′ outside the computational domain. To do so, we use the mathematical

form of Huygen’s principle (Sarabandi, 2009; Novotny and Hecht, 2012), that

effectively ”propogates” the field created by secondary point sources on the surface

of the scatterer to the far-field point. So along with knowledge of the tangential

fields on the scatterer surface (as obtained from FEM), we require knowledge of

the free space Dyadic Green’s function
↔
G(r, r′) 1. The reason we require a dyadic

(rank-2 tensor/matrix) functional form for the Green’s function is because we

are dealing directly with the vector wave equation. Since both the incident and

scattered fields have 3 components, the Green’s function must have the form of a

3× 3 matrix to effect a valid transformation.

We interpret the incident field as being generated by a vector valued current

source ~J located far away from the scatterer, so that

~Einc(r) ≡ ±jωµ0

∫
↔
G(r, r′) ~J(r′)dr′ (3.1)

We may define ~Q(r) := jωµ0
~J(r), so that the vector Helmholtz equation for the

electric field in the region outside the scatterer takes the form

∇× (∇× ~E)− k2 ~E = ~Q(r) (3.2)

The free space dyadic Green’s function
↔
G(r, r′) thus satisfies

∇× (∇×
↔
G)− k2

↔
G =

↔
I δ(r − r′) (3.3)

Take a dot product of Equation (3.2) with
↔
G and Equation (3.3) with ~E , subtract

them, and volume integrate (over the domain outside the scatterer, denoted V1)

1The vector symbol for position vectors has been dropped in this section only to keep equa-
tions clean



on both sides. The RHS would then be the scattered field. Hence, we have

~Escat(r
′) = ±

∫
V1

[
(∇× (∇×

↔
G)) · ~E −

↔
G · (∇× (∇× ~E))

]
dV (3.4)

where ~Escat(r
′) is the scattered electric field at r′. Using a different version of

Green’s theorem, the above volume integral can be transformed to the following

surface integral (over the scatterer surface, denoted R)

~Escat(r
′) = ±

∮
R

[↔
G · n̂× (∇× ~E) + (∇×

↔
G) · (n̂× ~E)

]
dS (3.5)

Here, n̂ is the unit normal vector on the surface of the scatterer. Now, from FEM,

we also get the total field coefficients um specifically for edges belonging to surface

elements. The sum index m in the following equation is only over such edges.

~Escat(r
′) = ±

∑
m

um

∮
R

[↔
G · n̂× (∇× ~Tm) + (∇×

↔
G) · (n̂× ~Tm)

]
dS (3.6)

In the far-field limit, the 3D dyadic Green’s function takes the form (Sarabandi,

2009)
↔
G(r, r′) ≈ (

↔
I − r̂′r̂′)e

−jk|r−r′|

4π|r′|
(3.7)

Here, r̂′r̂′ represents the outer product of the unit position vector corresponding

to r′ with itself. The curl of the dyadic green’s function is given by (Sarabandi,

2009)

∇×
↔
G =


0 − ∂

∂z
∂
∂y

∂
∂z

0 − ∂
∂x

− ∂
∂y

∂
∂x

0

 e−jk|r−r
′|

4π|r′|
(3.8)

Simplifying Equation (3.8) in the far-field approximation, we get

∇×
↔
G ≈


0 −z′ y′

z′ 0 −x′

−y′ x′ 0

 jk

4π|r′|2
e−jk|r−r

′| (3.9)

The curl of our vector basis function is given by

∇× ~T =
l

18V 2
(c1d2 − c2d1, d1b2 − d2b1, b1c2 − b2c1) :=

l

18V 2
(β1, β2, β3) (3.10)
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Then

n̂× (∇× ~T ) =
l

18V 2

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

nx ny nz

β1 β2 β3

∣∣∣∣∣∣∣∣∣ :=
l

18V 2
(α1, α2, α3) (3.11)

Using the expressions in equations (3.11) and (3.7) in the first term of the scattered

field integral equation (3.6), after simplifications, we have

⇒
↔
G · n̂× (∇× ~T ) =

l

72πV 2

M |α〉
|r′|3

e−jk|r−r
′| (3.12)

where

M :=


y′2 + z′2 −x′y′ −x′z′

−x′y′ x′2 + z′2 −y′z′

−x′z′ −y′z′ x′2 + y′2

 |α〉 :=


α1

α2

α3

 (3.13)

where

α1 := (nyβ3 − nzβ2) α2 := (nzβ1 − nxβ3) α3 := (nxβ2 − nyβ1) (3.14)

β1 := (c1d2 − c2d1) β2 := (d1b2 − d2b1) β3 := (b1c2 − b2c1) (3.15)

Now

n̂× ~T :=
l

36V 2


γx(r)

γy(r)

γz(r)

 :=
l

36V 2
|γ(r)〉 (3.16)

Using the expressions in equations (3.16) and (3.9) in the second term of the

scattered field integral equation (3.6), after simplifications, we have

⇒ (∇×
↔
G) · (n̂× ~T ) =

l

144πV 2

jkN |γ(r)〉
|r′|2

e−jk|r−r
′| (3.17)

where

N =


0 −z′ y′

z′ 0 −x′

−y′ x′ 0

 |γ(r)〉 =


γx(r)

γy(r)

γz(r)

 (3.18)
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where

γx(r) := 6V

[
ny(d2L1(r)− d1L2(r))− nz(c2L1(r)− c1L2(r))

]
γy(r) := 6V

[
nz(b2L1(r)− b1L2(r))− nx(d2L1(r)− d1L2(r))

]
γz(r) := 6V

[
nx(c2L1(r)− c1L2(r))− ny(b2L1(r)− b1L2(r))

] (3.19)

Using the results in equations (3.12) and (3.17) in the scattered field integral

equation (3.6), we finally have

~Escat(r
′) ≈ ±

exp (−jk0
√
εr|r′|)

72π|r′|2
∑
m

[
umlm∆e

V 2
e

(
M |α〉m
|r′|

+
jk0
√
εr

2
N |γ(rG)〉m

)]
(3.20)

Here ∆e is the area of the exposed surface of a surface-element e, Ve is its volume,

rG = (r1 + r2 + r3)/3 is the position vector of the centroid of the exposed triangle.

Equation (3.20) is a neat result. Physically, it can be interpreted as a linear

superposition of the fields created by secondary point-sources located at the cen-

troids of exposed triangles on the surface of the scatterer (a sphere in our case).

Notice that there is a 1/|r′|2 outside. But also note that M/|r′| and N have entries

that linear in the coordinates of r′. So effectively, we can interpret the result as

a linear superposition of the fields created by secondary point-sources. Now that

we know ~Escat(r
′), the Radar Cross Section (RCS) can be calculated as

σ = lim
r′→∞

4πr′2
| ~Escat(r

′)|2

| ~Einc(r′)|2
(3.21)

Now take a look at Figure (2.1) again, where we choose a homogeneous dielectric

sphere as the scatterer. In the case when the direction of propogation of the

incident field is along +z (k̂ = ẑ) and the wave is x-polarized (Êinc = x̂), the

analytical solution for the far-field is given by the Mie Series (Bohren and Huffman,

2008)

~Escat(r
′) =

∞∑
n=1

En(janN
(3)
e1n(r′)− bnM (3)

o1n(r′)) (3.22)

where En, an, bn are certain coefficients, N
(3)
e1n(r′) and M

(3)
o1n(r′) even and odd vector

spherical harmonics of different kinds, but with characteristic indices 1 and n.
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Further, the Scattering Cross Section is analytically given by

σ =
2π

k2
0

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2) (3.23)

Finally, FEM can claim victory if there is good agreement between the analytical

and numerically obtained scattering cross-sections!
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CHAPTER 4

Implementation, Remarks

We are developing a custom FEM software in C++ based on the formalism pre-

sented in this thesis. Our motivation to do so is that a working customizable

3D forward model would be immensely helpful in the group’s future endeavors in

Remote Sensing and other inverse scattering problems.

We use Gmsh (Geuzaine and Remacle, 2009) to tetrahedrally mesh a cubic

computational domain with a sphere inside (Figure (2.2b)) for different discretiza-

tions. The exported mesh file contains information about the coordinates of each

node, and the nodes belonging to each tetrahedral element. This information is

read into our C++ code (for FEM) as data structures for nodes and elements.

Using this knowledge, data structures for edges, and surface elements were cre-

ated using efficient algorithms. The FEM matrix A and the Incident-field vector

b were coded using analytical expressions derived in our formulation. Exploiting

the sparsity of the FEM matrix, its inversion was programmed using the SparseLU

solver available in the Eigen library of C++.

We are currently in the process of perfecting the forward model to find better

agreement between FEM and Mie theory. In this pursuit, we have proposed a

procedure to verify the correctness of evaluation and coding of the FEM matrix

using the Method of Manufactured Solutions (Marchand and Davidson, 2011) and

are working towards implementing it.



Figure 4.1: Comparison between computational and analytical far-field vs eleva-
tion angle θ: for wavelength λ = 30cm, radial distance d = 3λ, az-
imuth angle φ = 90, complex permittivity ε = 10 − 4j. We observe
a similar nature of variations, but the agreement needs to be much
stronger. We recently corrected a major flaw in our Huygen’s princi-
ple formulation of far-field, which is not reflected yet in this plot
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