The Tent Map

Denesh Kumar Sriram Gopalakrishnan

Department of Physics IIT Madras

April 23, 2019

Outline

1 Introduction

- 2 Birth of Period three orbit
- 3 Definition of Chaos
- **4** Bifurcation, Sensitive Dependence
- **5** Invariant Density
- 6 Interesting properties of tent map
- 7 An application of tent map
- 8 Encryption and Decryption algorithms
 - 9 Experimental results

D References

Introduction

What is a tent map ?

- The tent map is defined by: $T_r(x) = r \min \{x, 1-x\} \ (0 \le x \le 1)$
- **2** Is a valid map only when $0 \le r \le 2$.
- **3** For r < 1, stable f.p at origin. For r = 1, the entire interval [0, 0.5] is fixed. For r > 1, there are unstable fixed points at the origin and $\frac{r}{r+1}$.

Figure 1: Tent map for various ranges of r in [0,2].

Introduction

Tent map at r = 2

- Iterates of the map $T_2^n(x)$ for $n \ge 2$ have a simple geometric structure.
- Tⁿ₂(x) has 2ⁿ⁻¹ tents in [0,1], implying 2ⁿ intersections with y = x line, and hence the map has 2ⁿ period-n points.
- #Prime period-n orbits =
 $(2^n (\text{prime periodic points with period} = \text{factors of n}))/n$

Introduction

Interesting observation

- 2 prime period-2 points and 4 prime period-4 points are created at r = 1.
- ② Conjecture: One prime periodic orbit of period 2^k is born at r = 1 for all natural numbers k.

Figure 3: The plots show the creation of period-2 and period-4 points as r is increased slightly beyond 1.

Period 3 implies chaos

- A prime period-3 orbit is born at $r \approx 1.62$, and there are two prime period-3 orbits for $1.62 < r \leq 2$.
- By Li and Yorke's theorem, the existence of period-3 points implies the existence of periodic points of all periods, as well as the existence of an uncountable subset of [0, 1] that is neither periodic, nor asymptotically periodic.

Figure 4: The plots show the creation of prime period-3 points at r = 1.62

Devaney's definition of Chaos

Let X be a metric space. A continuous map $f:X\to X$ is said to be chaotic on X if -

- f is topologically transitive, i.e for every pair of non-empty open sets U and V in X, there is a non-negative integer n such that fⁿ(U) ∩ V ≠ Ø.
- **2** The periodic points of f are dense in X.
- \bullet f has sensitive dependence on initial conditions.

Due to Banks et. al. (1992), it has been established that conditions 1 and 2 imply condition 3.

Bifurcation, Sensitive Dependence

Figure 5: Left: Our approximate bifurcation (Python) Right: Wikipedia

Figure 6: $x_{01} = 0.1$, $x_{02} = 0.1000001$, N = 100

Invariant Density

Frobenious Peron Equation

- The Frobenius-Peron evolution of phase space density for T_2 is given by : $\rho(x, n+1) = \frac{1}{2} \rho\left(\frac{x}{2}, n\right) + \frac{1}{2} \rho\left(1 \frac{x}{2}, n\right)$
- The functional equation governing invariant densities of the map is hence : ρ₀(x) = ¹/₂ ρ₀ (^x/₂) + ¹/₂ ρ₀ (1 ^x/₂) It turns out that the invariant density of T₂ is ρ₀(x) = 1.
- \bigcirc NOTE: The simulation was done for r=1.999.

Properties at r=2

- A point c ∈ [0, 1] is periodic iff it is a rational number with even numerator and odd denominator, (i.e) c = ^p/_q where p is odd and q is even. eg. ²/₇
- The other two types of rationals (odd/odd and odd/even) are asymptotically periodic (eg. ³/₈), while irrationals are aperiodic.
- ◎ $T_2(x)$ is **topologically conjugate** to $L_4(x)$ via $h(x) = \sin^2(\frac{\pi x}{2})$.(i.e) $T_2 \circ h = h \circ L_4$. As discussed in class, topological conjugacy leads to an interesting insight: Since the condition can be extended as $T_2^n \circ h = h \circ L_4^n \quad \forall n \ge 1$, and because $\sin^2(\frac{\pi x}{2})$ in injective in [0, 1], there is a one-to-one correspondence between periodic orbits of T_2 and L_4 for all periods. Here we use the Logistic map as $L_r(x) = r x(1-x)$.

Tent map in Image encryption

- The chaotic properties of the tent map are used to come up with an algorithm to encrypt an image for upholding the security of the same.
- Provide a constraint of the second second

Encryption and Decryption algorithms

Testing the algorithm on "Lenna's" image

- The following experimental results were presented to demonstrate the efficiency of the proposed image encryption algorithm.
- The standard grayscale image Lenna (Fig. 9a) with the size (256 X 256) pixels was used for the experiment. The results of the encryption are presented in Fig. 9b.
- **③** In this scheme, we take the key to the original as follows: $x_0 = 0.000001, r = 1.9999999.$
- When taking the wrong key, the difference between wrong and right key is 10^{-16} . For example, using $x_0 = 0.0000009999999999$ as the wrong key to decrypt the encryption image, we got a wrong decrypted image shown in Fig. 9f.

Experimental results

Figure 9: a) The original image. b) The encrypted image. c) The decrypted image. d) The histogram of original image. e) The histogram of ciphered image. f) The decrypted image with wrong key.

References

- Xun Yi. "Hash function based on chaotic tent maps". In:IEEE Transactions on Circuits and Systems II:Express Briefs 52.6 (2005), pp. 354–357.
- NK Pareek, Vinod Patidar, and KK Sud. "Cryptography using multiple one-dimensional chaotic maps". In:Communications in Nonlinear Science and Numerical Simulation 10.7 (2005), pp. 715–723.
- Chunhu Li et al. "An image encryption scheme based on chaotic tent map". In:Nonlinear Dynamics 87.1(2017), pp. 127–133.
- Kwok-Wo Wong, Bernie Sin-Hung Kwok, and Wing-Shing Law. "A fast image encryption scheme basedon chaotic standard map". In:Physics Letters A 372.15 (2008), pp. 2645–2652.
- Tien-Yien Li and James A Yorke. "Period three implies chaos". In:The American Mathematical Monthly 82.10 (1975), pp. 985–992.
- Robert Devaney. An introduction to chaotic dynamical systems. Westview press, 2008.

THANK YOU